Fault detection for the networked control systems with locally over-lapped asynchronous switching law

WANG Zhao-lei1a, XU Li-jie2, WANG Qing1a, DONG Chao-yang1b

(1a. School of Automation Science and Electrical Engineering, 1b. School of Aeronautical Science and Engineering, Beihang University, Beijing 100191, China; 2. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China. Correspondent: WANG Zhao-lei, E-mail: beiliwzl123@163.com)

Abstract: For the fault detection problem of the networked control systems with the presence of time-varying short delay and packet dropouts, the dynamics of the nonlinear plant are modeled as a switched system. Considering the locally overlapped switching law in practice, the switched system above is divided into several locally overlapped switched systems. Also, considering the asynchronous switching phenomena between the filters and models, the systems are further augmented to be locally overlapped asynchronous switched systems. By combing the common Lyapunov function method and the average dwell time method, the fault detection filters are established in terms of LMIs. Finally, numerical examples based on a networked aircraft’s full-envelope flight are given to demonstrate the effectiveness of the proposed method.

Key words: fault detection; asynchronous switching; locally overlapped; delays and packet dropouts
是由状态子系统1切换至子系统3必须经过公共子系统2. 该特性的产生是由切换单元自变量(如时间、系统状态等)是渐变的, 导致切换单元具有渐变特性。

鉴于目前对局部交叠异步切换系统的研究较少, 本文将一类非线性NCS对象建模为线性切换系统, 考虑切换单元的局部交叠特性, 为降低设计保守性将其划分为若干局部交叠切换系统(SOSS)。考虑网络因素导致的异步切换问题, 进一步将系统增广为局部交叠异步切换系统, 并结合公共Lyaunov函数和平均驻留时间方法对系统稳定性进行分析, 给出鲁棒故障检测滤波器设计方法。最后通过数值仿真表明了所提出方法的有效性。

1 模型建立

考虑一类非线性NCS, 控制和检测单元与执行器直接连接, 与传感器通过数据总线连接。假设非线性被控对象可分段线性化为如下线性切换系统:

\[\dot{x}(t) = A_{c,\sigma}(k)x(t) + B_{c,\sigma}(k)u(t) + B_{d,\sigma}(k)d(t) + B_{f,\sigma}(k)f(t), \]

\[y(t) = C_{c,\sigma}(k)x(t) + D_{d,\sigma}(k)d(t) + D_{f,\sigma}(k)f(t). \]

其中: \(x \in R^n \) 为状态; \(u \in R^n \) 为输入; \(y \in R^n \) 为输出; \(d \in R^n \) 为 \(L_2 \) 有界未知扰动和故障; \(A_{c,\sigma}(k), B_{c,\sigma}(k), C_{c,\sigma}(k), D_{d,\sigma}(k), D_{f,\sigma}(k) \) 为常值矩阵; 切换单元 \(\sigma \in \mathcal{T} \), 且 \(\mathcal{T} = \{1, 2, \ldots, N\} \) 为子系统标签全集。

由1 切换单元 \(\sigma \) 根据当前状态在线决定。由于系统状态参数通过网络传输给切换决策模块时存在时延和丢包, \(\sigma \) 的更新存在延迟, 导致滤波器切换时刻滞后于模型切换时刻, 引发异步切换问题。

不失一般性, 给出如下假设。

假设1 采样周期为 \(T \), 控制器和执行器节点均为事件发生, 传感器节点采用时间驱动; 单包传输, 丢包满足伯努利分布, 包丢包率为 \(p \), 随机时延 \(\tau_k < T \)。系统总采用最新数据, 即将长时延视为丢包。采用输出反馈控制, 令 \(z(k) \) 为到达控制和检测单元的信号 \(y(k), \bar{u}(k) \) 为执行器端实际控制信号。

定义随机变量 \(\theta(k) \in \{0, 1\} \), \(\theta(k) = 1 \) 表示无丢包, \(\theta(k) = 0 \) 表示有丢包。\(\mathbb{P}(\theta(k) = 1) = \rho, \mathbb{P}(\theta(k) = 0) = 1 - \rho \)。由于存在零阶保持器, 有

\[z(k) = \theta(k)y(k) + (1 - \theta(k))z(k - 1), \]

\[\bar{u}(k) = \theta(k)u(k) + (1 - \theta(k))\bar{u}(k - 1). \]

当仅具有时延时, 系统(1) 子模型i 的离散模型为

\[x(k + 1) = A_i x(k) + B_i^0 u(k) + B_i^1 \bar{u}(k - 1) + B_{d,i} d(k) + B_{f,i} f(k), \]

\[y(k) = C_i x(k) + D_{d,i} d(k) + D_{f,i} f(k). \]

其中

\[A_i = e^{A_{c,i} T}, B_i^0 = \int_0^T e^{A_{c,i} T} B_{c,i} dT, \]

\[B_i^1 = \int_0^T e^{A_{c,i} T} B_{d,i} dT, d_k = \int_0^T e^{A_{c,i} T} B_{f,i} dT, C_i = C_{c,i}, D_{d,i} = D_{d,i}, D_{f,i} = D_{f,i}, \]

\[B_i = B_i^0 + B_i^1 = \int_0^T e^{A_{c,i} T} B_{c,i} dT. \]

发生丢包时, 子模型i 的离散模型可表示为

\[x(k + 1) = A_i x(k) + B_i \bar{u}(k - 1) + B_{d,i} d(k) + B_{f,i} f(k), \]

\[y(k) = C_i x(k) + D_{d,i} d(k) + D_{f,i} f(k). \]

其次, 系统状态 \(\sigma \) 被定义为

\[u_r(k) = \Delta(u(k)) \tau_k, B_{\sigma,\sigma}(k) = e^{A_{c,\sigma} T} B_{c,\sigma}(k). \]

综上(3) 和(4), 子模型i 对应离散线性NCS 模型表示为

\[x(k + 1) = A_i x(k) + B_i \bar{u}(k) + B_{d,i} d(k) + B_{f,i} f(k), \]

\[y(k) = C_i x(k) + D_{d,i} d(k) + D_{f,i} f(k). \]

定义1 如果存在有限的集合 \(\mathcal{T}_n, n \in \mathcal{G}, \bigcup_{n=1}^r \mathcal{T}_n = \mathcal{T} \), 且对于 \(\forall \tau \in \mathcal{G} \), \(\mathcal{T}_n \cap \bigcup_{m=1, m \neq n}^r \mathcal{T}_m \neq \emptyset \), 使得 \(\nu k \geq 0, \sigma(k + 1) \in \bigcup_{n=1}^r \mathcal{T}_n \) 成立, 则切换律 \(\sigma(k) \) 称为局部切换律。其中: \(\Gamma = \{1, 2, \ldots, r\} \) 为自然数集合, \(r \) 为交叠系统个数(SOSS)个数。

基于定义1, 可将切换系统(1) 重写为如下局部交叠切换系统, 即LOSS \(\sigma_n(k) \):

\[x(k + 1) = A_{\sigma_n(k)} x(k) + B_{\sigma_n(k)} \bar{u}(k) + B_{d,\sigma_n(k)} d(k) + B_{f,\sigma_n(k)} f(k), \]

\[y(k) = C_{\sigma_n(k)} x(k) + D_{\sigma_n(k)} d(k) + D_{f,\sigma_n(k)} f(k). \]

其中: \(\sigma_n(k) \rightarrow \mathcal{T}_n, \bigcup_{n=1}^r \mathcal{T}_n = \mathcal{T}, n \in \mathcal{G} = \{1, 2, \ldots, r\} \).

2 问题描述

构造模糊依赖于切换的切换线性NCS 模型

\[x_n(k + 1) = A_n \sigma(k) x_n(k) + B_n \sigma(k) z(k), \]

\[r(k) = C_n \sigma(k) x_n(k) + D_n \sigma(k) z(k). \]
其中: \(\sigma(k) \in T, x_{\eta}(k) \in R^k, r \in R^k\) 分别为滤波器状态和残差, \(A_{\eta,\sigma(k)}, B_{\eta,\sigma(k)}, C_{\eta,\sigma(k)}, D_{\eta,\sigma(k)}\) 为待求参数阵。

假设 \(k_1, k_2, \cdots, k_{n-1}, k_n\) 分别为 \(LOSS 1 \sim n\) 的激
活时刻, \(k_{n+1}, k_{n+2}, \cdots\) 为 \(LOSS n (n \in \Gamma)\) 各工作点的激
活时刻, 当 \(k \in [k_{n+1}, k_{n+1}+1] (l \in N)\) 时, 工作点 \(\sigma(k_{n+i})\) 被激活。定义 \(T(k_{n+i}, k_{n+1}+1)\) 和 \(T(k_{n+i}+1, k_{n+1})\) 分别代表区间 \([k_{n+i}, k_{n+i}+1]\) 中 Lyapunov 函数减小或增加的分离区间的合并集, \(\forall (\Gamma)\), \([k_{n+i}, k_{n+i}+1] = \bigcup T(k_{n+i}, k_{n+1}+1)\) 和 \(T(k_{n+i}+1, k_{n+1})\) 分别代表区间 \([k_{n+i}, k_{n+i}+1]\) 和 \(T(k_{n+i}+1, k_{n+1})\) 的长度。

考虑由滤波器切换指令 \(\sigma(k)\) 更新滞后引起的异
步切换问题, 相应 \(T(k_{n+i}, k_{n+i}+1)\) 区间仅发生在子系统切换时刻 \(\sigma(k)\) 在 \(\forall (\Gamma)\) 内各滤波器激活时刻, 切换时滞变量可以定义为

\[T(k_{n+i}, k_{n+i}+1) = \hat{k}_{n+i} - k_{n+i} = \tau_{n+i}, \quad \forall \in N, n \in \Gamma, \]

即 \(\tau_{n+i}\) 为切换时刻 \(k_{n+i}\) 对应的滤波器切换时滞。

由于滤波器参数 \(\sigma(k)\) 更新存在时滞 \(\tau_{n+i}\), 式(7) 将转化为

\[x_{\eta}(k+1) = A_{\eta,\sigma(k)}x_{\eta}(k) + B_{\eta,\sigma(k)}z(k), \]

其中 \(\hat{k} = k - \tau_{n+i}\)。

定义向量形式

\[\xi(k) = [\xi_T(k) z_T(k-1) x_T^T(k)], \]

哨风 \(w(k) = \left[\begin{array}{c} u_T(k) u_T^T(k) d_T(k) f_T(k) \end{array} \right]^T, \]

并令 \(r_n(k) = r(k) - f(k)\)。形式 \((2), (6)\) 和 \(8)\), 对于任意 \(\forall \sigma_n(k) = i, \sigma_n(k) = j, i \in \tau_{n+i}, i \neq j, n \in \Gamma\), 可得局部变界异步切换系统

\[\xi(k+1) = (A_i \hat{\xi}(k) + \hat{d}(k)) \xi(k), \quad r_e(k) = \]

\[(C_i \hat{\xi}(k) + D_i \hat{d}(k)) w(k), \]

其中

\[\hat{\xi}(k) = \xi(k) - \rho \xi(k), \quad \hat{d}(k) = \rho \xi(k), \]

\[\hat{\xi}(k) \hat{d}(k) \hat{\xi}(k) = 0, \]

\[\hat{d}(k) \hat{d}(k) = \rho(1 - \rho). \]
表示系统在 $[k_1, k_2]$ 时间内LOSS间切换的次数，若存在任意给定的 $N_0 > 0$ 和 $\eta > 0$，使得

$$N_\eta[k_1, k_2] \leq N_0 + \frac{k_2 - k_1}{\eta},$$

则称 h_η 为LOSS间平均驻留时间。不失一般性，本文取 $N_0 = 0$，且简记 $N_\eta[k_1, k_2]$ 为 N_η。

引理1 考虑系统 (9) 在 LOSS n 内工作。对于给定常数 $0 < \alpha < 1, \beta > \eta \geq -\alpha, \mu > \eta$，若存在连续可微函数 $V_n(k)$ 和两个 γ_∞ 类函数 κ_1, κ_2，使得在 $w(k) = 0$, $\forall(m, p) \in T_n \times T_n, m \neq p, \forall n \in \Gamma$ 时有

$$\kappa_1(\|\xi(k)\|) \leq V_n(k) < \kappa_2(\|\xi(k)\|);$$

$$E\{\Delta V_n(\xi(k))\} \leq \begin{cases} -\alpha V_n(\xi(k)), & \forall k \in T_n(k_n, k_n, k_{n+1}) \cap \mathbb{T}_n; \\ \beta V_n(\xi(k)), & \forall k \in T_n(k_n, k_{n+1}) \cap \mathbb{T}_n; \end{cases}$$

$$V_n(\xi(k)) \leq \mu V_n(\xi(k))$$

成立，则 LOSS n 内系统在平均驻留时间 τ_n^∞ 满足式 (18) 的切换信号下 GUAS-M，即

$$\tau_n^\infty > \tau_n^\alpha = \{\tau_n^\alpha \mid \ln \beta - \ln \alpha \} + \mu \ln \mu / \ln \alpha. \tag{18}$$

其中：$\alpha = 1 - \alpha, \beta = 1 + \beta, \tau_n^\infty = \max_{n \in \mathbb{N}} \tau_n, n \in \Gamma$。

引理2 考虑系统 (9) 在 LOSS n 内工作。对于给定常数 $0 < \alpha < 1, \beta > \eta \geq -\alpha, \mu > \eta$，$\gamma_n(k) = m \in T_n$时，如存在连续可微函数 $V_n(k)$，使得式 (17) 成立，则 LOSS n 内系统在式 (18) 的切换信号下 GUAS-M，且具有形式式 (10) 的加权 l_2 增益 $\hat{\gamma}_n$，其中

$$\hat{\gamma}_n = \max_{\gamma_n \in \mathbb{T}_n} \left\{ \sqrt{\mu^2 \gamma_n^2 \gamma_n^2 \gamma_n \gamma_n} \right\};$$

$$\theta = (1 + \beta)/(1 - \alpha);$$

$$\phi(k) = E\{\xi^T(k) \rho(k)\} - \gamma_n w^T(k) w(k);$$

$$E\{\Delta V_n(\xi(k))\} \leq \begin{cases} -\alpha V_n(\xi(k)) - \phi(k), & \forall k \in T_n(k_n, k_{n+1}); \\ \beta V_n(\xi(k)), & \forall k \in T_n(k_n, k_{n+1}). \end{cases} \tag{19}$$

注 引理1和引理2的证明可参见文献[14]的定理3.15，通过使用 $E\{V_n(x(k))\}$ 和 $E\{\Delta V_n(x(k))\}$ 交换文献[10] 引理3和引理4证明中的 $V_n(x(k))$ 和 $\Delta V_n(x(k))$ 直接得到，限于篇幅，略。

3.1 局部稳定性和 l_2 性能分析

定理1 对于给定常数 $0 < \alpha < 1, \beta > \eta \geq -\alpha, \vartheta = \sqrt{(1 - \rho)}, \gamma_n > 0, \forall n \in \Gamma$，若存在 $P_n > 0, \forall n \in \Gamma$，使得 LMI$s$ (20) 和 (21) 成立，则 LOSS n 内，对于任意 τ_n^∞ 满足式 (22) 约束的 $\sigma_n(k)$，系统 (9) GUAS-M，且具有加权 l_2 增益 $\hat{\gamma}_n$，其中

$$i, j \in T_n, \forall n \in \Gamma, \ i \neq j, \Omega_n = P_n - G - G^T,$

$$\begin{bmatrix}
\Omega_n & 0 & 0 & 0 & G^T \hat{A}_{ii} & G^T \hat{B}_{ii} \\
O & \Omega_n & 0 & 0 & 0 & 0 \end{bmatrix} < 0, \tag{20}$$

$$\begin{bmatrix}
\Omega_n & 0 & 0 & 0 & G^T \hat{A}_{ij} & G^T \hat{B}_{ij} \\
O & \Omega_n & 0 & 0 & 0 & 0 \end{bmatrix} < 0, \tag{21}$$

$$\tau_n^\infty > \tau_n^\alpha = \{\tau_n^\alpha \mid \ln \beta - \ln \alpha \} + \mu \ln \mu / \ln \alpha. \tag{21}$$

证明 首先证明在 LOSS n 内的稳定性。LOSS n 选取式 (23) 所示的公共 Lyapunov 函数

$$V_n(k) = \xi^T(k) P_n \xi(k), \forall n \in \Gamma. \tag{23}$$

式 (23) 满足引理1中 (15) 的约束，故 LOSS n 内各工作点有公共 Lyapunov 函数。由引理1可知，此时 $\mu = 1$，根据式 (18)，系统 (9) 在 LOSS n 内，τ_n^∞ 满足式 (22) 的约束。当 $w(k) = 0$ 时，$\forall n \in \mathbb{T}_n(k_n, k_{n+1}), \forall k \in \mathbb{T}_n(k_n, k_{n+1})$，对于任意非零 $\xi(k)$ 和切换信号 $\forall \sigma_n(k) = i, \sigma_n(k - \tau_n) = j \in T_n \times T_n, \forall n \in \Gamma$, 有

$$E\{V_n(k + 1)\} - V_n(k) / \alpha V_n(k) = E\{\xi^T(k + 1) P_n \xi(k + 1)\} - \xi^T(k) (1 - \alpha) P_n \xi(k) = \xi^T(k) A_{ij} \xi(k), \tag{24}$$

其中 $A_{ij} = A_{ij}^T P_n A_{ii} + \vartheta^2 A_{ij}^T P_n A_{ij} - (1 - \alpha) P_n$。

由式 (20) 可知，$P_n - G - G^T \geq -G^T P_n - G$, 替换式 (20) 和 (21)，利用 diag(G^T, G^T, I, I, I, I) 进行全等变换，由 Schur 补可得，式 (20) 等价于

$$\begin{bmatrix}
\hat{A}_{ij} & \hat{B}_{ij} \\
\hat{A}_{ij} & \hat{B}_{ij} \\
0 & 0 & 0 & I & 0 & 0 \end{bmatrix} < 0, \tag{25}$$

$$\begin{bmatrix}
\hat{C}_{ij} & \hat{D}_{ij} \\
\hat{C}_{ij} & \hat{D}_{ij} \\
0 & 0 & 0 & I & 0 & 0 \end{bmatrix} < 0, \tag{26}$$

利用相同方法，结合式 (21) 可证得，当 $w(k) = 0$
时，∀k ∈ [k_{n,t}, k_{n,t} + \tau_{n,t}), \exists
\[E\{\Delta V_n(k)\} \leq \beta V_n(k), \]
∀k ∈ [k_{n,t}, k_{n,t} + \tau_{n,t}), \forall n \in \Gamma. \] (27)

结合式(26)、(27)和引理1可知，系统(9)在LOSS n 内切换且 \(r_{n}^* \) 满足式(22)约束时 GUAS-M.

下面证明系统(9)在零初始条件下具有式(10)的加权 l2 增益。定义 \(\zeta(k) = [\xi^T(k), w^T(k)]^T \)，对于任意非零 \(w(k) \in L_2[0, \infty), \forall k \in [k_{n,t}, k_{n,t+1}) \)，\(\forall n \in \Gamma \) 时，引理2 各子系统 l2 增益均为 \(\gamma_n \) 时，则有
\[E\{V_n(k+1)\} - V_n(k) + \alpha V_n(k) + E[r_{n}^T(k) r_{n}(k)] - \gamma_n^2 w^T(k) w(k) = \]
\[E\{\xi^T(k) D_n^T \xi(k) + \theta(k) C_n^T \xi(k) + \theta(k) D_n^T \xi(k)\} \times \]
\[\zeta^T(k) \Gamma_{1,1} \zeta(k). \] (28)

由式(25)，\(\forall k \in [k_{n,t}, k_{n,t} + \tau_{n,t}, k_{n,t+1}), \forall n \in \Gamma \) 有
\[E\{\Delta V_n(k)\} \leq \]
\[-\alpha V_n(k) + E[r_{n}^T(k) r_{n}(k)] - \gamma_n^2 w^T(k) w(k). \] (29)

利用相同方法，结合式(21)得到对于任意非零 \(w(k) \in L_2[0, \infty), \forall k \in [k_{n,t}, k_{n,t} + \tau_{n,t}), \forall n \in \Gamma \)，有
\[E\{\Delta V_n(k)\} \leq \]
\[-\beta V_n(k) + E[r_{n}^T(k) r_{n}(k)] - \gamma_n^2 w^T(k) w(k). \] (30)

结合式(29)、(30)和引理2可得，在LOSS n 内系统(9)在 \(r_{n}^* \) 满足式(22)约束的异步切换下 GUAS-M，由于 \(\bar{N}_0 = 0 \)，加权 l2 增益退化为 \(\gamma_n \). □

3.2 全局稳定性与 l2 性能分析

定理2 给定常数 \(\mu \geq 1 \)，若存在正定阵 \(P_n, \forall n \in \Gamma \)，\(P_n \leq \mu P_n, \forall m, n \in \Gamma, m \neq n \)，使得定理1 成立，同时全局切换信号 \(\sigma(k) \) 满足
\[h_k > h_k^* = -\ln \mu - \ln \zeta, \] (31)
则系统(9) GUAS-M，且在零初始条件下具有式(10)的加权 l2 增益。其中
\[\gamma = \max\{\gamma_n\}, \forall n \in \Gamma; \]
\[\zeta = \tilde{\alpha} \theta^* / r_{n}^{\min}, \quad r_{n}^{\min} = \min\{r_{n}^{m}\}, \quad \tau_{M} = \max\{\tau_{n,m}\}. \]

证明 定理1 可以保证系统在 LOSS 内切换时 GUAS-M。当在 LOSS 间切换时，假设系统从 LOSS 1 \(\sim r \) 按顺序激活，由定义3 知 \(N_r = r - 1 \)。令 LOSS r 内 \(k \in [k_{r,t}, k_{r,t+1}) \) 则由式(26)和(27)得到
\[E\{V_n(k)\} \leq \]
\[\tilde{\alpha} \tau_{M} (k-r_{r,k-1}) \bar{\tau}_{M} (k-r_{r,k-1}) E\{V_n(k_r, r)\} \leq \]
\[\tilde{\alpha} (k-r_{r,k-1}) g^* \tilde{\alpha} E\{V_n(k_r, r)\} \leq \]
\[\zeta (k-r_{r,k-1}) g^* \min\{r_{n}^{m}\} E\{V_n(k_r, r)\} \leq \]
\[(\tilde{\alpha} \theta^* / r_{n}^{\min}) (k-r_{r,k-1}) E\{V_n(k_r, r)\}. \] (32)

由于 \(r_{n}^* \) 满足式(22)的约束，有
\[\tilde{\alpha} \theta^*/r_{n}^{\min} < \]
\[\tilde{\alpha} \theta^* / r_{n}^{\min} = \tilde{\alpha} (e^{\ln \theta} - \ln \zeta) = \tilde{\alpha} = 1. \] (33)
令 \(\zeta = \tilde{\alpha} \theta^*/r_{n}^{\min} < 1 \)，其中：\(r_{n}^{\min} = \min\{r_{n}^{m}\}, \tau_{M} = \max\{\tau_{n,m}\} \)。由式(32)和(33)得到
\[E\{V_n(k)\} \leq \zeta (k-r_{r,k-1}) E\{V_n(k_r, r)\}, \forall s \in \Gamma. \] (34)
同时，由式 \(P_n \leq \mu P_n, \forall m, n \in \Gamma, m \neq n \)，可得
\[V_n(k) \leq \mu V_n(k). \] (35)

基于式(34)和(35)，有
\[E\{V_n(k)\} \leq \zeta (k-r_{r,k-1}) E\{V_n(k_r, r)\} \leq \mu \zeta (k-r_{r,k-1}) E\{V_n(k_r, r)\} \leq \]
\[\mu \zeta (k-r_{r,k-1}) \zeta (k-r_{r,k-1}) \zeta (k-r_{r,k-1}) V_1(k_1) = \mu \zeta^N \zeta (k-r_{r,k-1}) V_1(k_1) \leq \mu \zeta^N \zeta (k-r_{r,k-1}) V_1(k_1) \leq \mu \zeta^N \zeta (k-r_{r,k-1}) V_1(k_1) \] (36)

由于 \(\text{LOSS} h_k \) 满足形式(31)的约束，有
\[\mu h_{k} \zeta \leq \mu \ln \zeta \ln \zeta = e^{\ln \zeta} \zeta = \zeta = 1. \]
可见，当 \(k \to \infty \) 时，\(E\{V_n(k)\} \to 0 \)，结合式(15)易证得系统 GUAS-M。由定理1 可知，在 \(\text{LOSS} n \) 内，零初始条件下具有加权 l2 增益 \(\gamma_n \)，可得系统全局切换过程中，具有加权 l2 增益 \(\gamma = \max\{\gamma_n\}, \forall n \in \Gamma \)。 □

注3 由式(22)和(31)可知，\(r_{n}^* \) 由异步切换引起，\(h_k \) 主要由参数 \(\mu \) 引起，故 \(r_{n}^* \) 比 \(h_k \) 小得多。若将所有子系统视为一个 \(\text{LOSS} \)，则退化为公共 Lyapunov 函数情况。若将各子系统视为一个 \(\text{LOSS} \)，则退化为平均驻留时间方法情况。由于全局公共 Lyapunov 函数难以选取，而平均驻留时间方法需满足较大的 \(h_k \) 约束。本文通过适当划分 \(\text{LOSS} \)，使得 \(\text{LOSS} \) 内切换满足较小的 \(r_{n}^* \) 约束，\(\text{LOSS} \) 间切换满足 \(h_k \) 约束，进而使算法具有较大的灵活性和较低的保守性。

3.3 滤波设计

定理3 对于给定常数 \(0 < \alpha < 1 \)，\(\beta \geq -\alpha, \mu \geq 1, \psi = \sqrt{\rho(1-\rho)} \)，\(\gamma_n > 0 \)，如果存在 \(A_{\eta_1}, B_{\eta_1}, C_{\eta_1}, \)
$D_{q,i}, i \in \mathcal{T}_n, \forall n \in \Gamma, \hat{P}_n \triangleq \begin{bmatrix} \hat{P}_{1n} \\ \hat{P}_{2n} \\ \hat{P}_{3n} \end{bmatrix} > 0, \tilde{G} = \begin{bmatrix} R & \Sigma \\ \Sigma^T & \Sigma^T \end{bmatrix}$，使得 $P_m \leq \mu \hat{P}_n, \forall m, n \in \Gamma$，LMI (37) 和 (38) 成立。则对于 τ_m 满足式 (22) 约束，h_n 满足式 (31) 约束的异步切换信号，当 $w(k) = 0$ 时，系统 (9) GUAS-M。在零初始条件下，具有式 (10) 的加权 ℓ_2 损益。其中

$$i, j \in \mathcal{T}_n, \forall n \in \Gamma, i \neq j, \hat{h} = \hat{n} + \hat{q};$$

$$\gamma = \max \{\gamma_n\}, \forall n \in \Gamma;$$

$$\phi_{11}^{ij} 0 0 0 \phi_{15}^{ij} \phi_{16}^{ij}$$

$$+ * * - I 0 \phi_{35}^{ij} \phi_{36}^{ij}$$

$$+ * * - I \phi_{45}^{ij} \phi_{46}^{ij}$$

$$+ * * - I -(1 - \alpha) \hat{P}_{n} 0$$

$$+ * * - * - \gamma_n^2 I$$

$$\phi_{11}^{pq} = \phi_{22}^{pq} = \hat{P}_{n} - \hat{G} - \hat{G}^T,$$

$$\phi_{15}^{pq} = \begin{bmatrix} R^T \hat{A}_{1,p} + \hat{B}_{n,q} \hat{C}_{1,p} \hat{A}_{n,q} \\ S^T \hat{A}_{1,p} + \hat{B}_{n,q} \hat{C}_{1,p} \hat{A}_{n,q} \end{bmatrix},$$

$$\phi_{25}^{pq} = \theta \begin{bmatrix} R^T \hat{A}_{2,p} + \hat{B}_{n,q} \hat{C}_{2,p} 0 \\ S^T \hat{A}_{2,p} + \hat{B}_{n,q} \hat{C}_{2,p} 0 \end{bmatrix},$$

$$\phi_{10}^{pq} = \begin{bmatrix} R^T \hat{B}_{1,p} + \hat{B}_{n,q} \hat{B}_{2,p} \\ S^T \hat{B}_{1,p} + \hat{B}_{n,q} \hat{B}_{2,p} \end{bmatrix},$$

$$\phi_{20}^{pq} = \theta \begin{bmatrix} R^T \hat{B}_{3,p} + \hat{B}_{n,q} \hat{B}_{2,p} \\ S^T \hat{B}_{3,p} + \hat{B}_{n,q} \hat{B}_{2,p} \end{bmatrix},$$

$$\phi_{32}^{pq} = [D_{q,p} \hat{C}_{1,p} \hat{C}_{0,p}], \phi_{34}^{pq} = \rho \hat{D}_{q,p} \hat{B}_{2,p} - \hat{D}_W,$$

$$\phi_{42}^{pq} = [\hat{D}_{q,q} \hat{C}_{2,p} 0], \phi_{44}^{pq} = \theta \hat{D}_{q,q} \hat{B}_{2,p},$$

$$\hat{A}_{1,p} = \begin{bmatrix} A_p & 0 \\ 0 & C_p 1 - \rho \end{bmatrix}, \hat{A}_{2,p} = \begin{bmatrix} 0 & 0 \\ 0 & C_p - I \end{bmatrix},$$

$$\hat{B}_{1,p} = \begin{bmatrix} B_p & \rho B_{r,p} & B_{d,p} & B_{f,p} \\ 0 & 0 & \rho D_{r,p} & \rho D_{f,p} \end{bmatrix},$$

$$\hat{B}_{2,p} = \begin{bmatrix} 0 & 0 & D_{d,p} & D_{f,p} \\ 0 & 0 & D_{d,p} & D_{f,p} \end{bmatrix},$$

$$\hat{C}_{1,p} = \begin{bmatrix} C_p - I \end{bmatrix}, \hat{D}_W = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}.$$
数。在均能满足的情况下再保证系统性能最优，将 \(T \) 划分为 \(T_1 = \{1, 2, 3, 4, 5\} \), \(T_2 = \{6, 7, 8, 9\} \) 和 \(T_3 = \{7, 8, 9, 10\} \)。其中工作点 5、6、7、8 和 9 为公共子系统。考虑工作点变化轨迹 2-4-5-7-10，对应的马赫数 \(M_a \)、高度 \(H \) 变化情况和工作点间切换过程如图 2 所示。

![图 2 切换过程及马赫数和高度变化](image)

由式 (22) 可计算出 \(\tau_a^* = \tau_a^2 = \tau_a^3 = 0.2500 \text{s} \)。由图 2 可知，在公共子系统 5 和 7 处发生了 LOSS 间切换。可计算出 LOSS 内平均驻留时间分别为 \(\tau_a = 10 \text{s} \), \(\tau_a^2 = 20 \text{s} \), \(\tau_a^3 = 10 \text{s} \)。满足式 (22) 约束。同时，由式 (31) 计算得到 \(h_a = 2.3500 \text{s} \)。LOSS 间平均驻留时间 \(h_a = 20 \text{s} \)，满足式 (31) 约束。可见，\(\tau_a^* \) 比 \(h_a \) 小得多。

设故障检测时间窗口 \(L = 10 \)，未知扰动信号 \(d(k) \) 是均值为 0，幅值小于 0.5 的均值分布信号。考虑如下分段故障信号:

\[
f(t) = \begin{cases}
0.45, & 15 \leq t \leq 25; \\
0.2, & 30 \leq t \leq 45; \\
0, & \text{otherwise.}
\end{cases}
\]

给定 \(\alpha = 0.01, \beta = 0.01, \mu = 2.5 \)，借助 Matlab Yalmip 工具箱，将定理 3 中指标 \(\gamma_n \) 也作为优化变量进行凸优化求解，得到 \(\gamma_1 = 1.5267 \), \(\gamma_2 = 1.5405 \), \(\gamma_3 = 1.4896 \)，即 \(\gamma^* = 1.5405 \)。

\[
A_{n, 5} = \begin{bmatrix}
-0.2668 & 0.0210 & -0.1905 \\
-20.1246 & 0.9329 & -0.1107 \\
0.1934 & -0.0006 & -0.0860
\end{bmatrix},
\]

\[
B_{n, 5} = \begin{bmatrix}
-1.4470 \\
-21.3103 \\
-0.8958
\end{bmatrix}, \quad D_{n, 5} = 6.0607,
\]

\[
C_{n, 5} = \begin{bmatrix}
-0.2472, 0.0923, 6.9142
\end{bmatrix},
\]

\[
A_{n, 7} = \begin{bmatrix}
-1.876, 0.0226, -0.4306 \\
-17.8922, 0.9336, -10.2501
\end{bmatrix},
\]

\[
B_{n, 7} = \begin{bmatrix}
-1.5970 \\
-28.5791 \\
-0.8789
\end{bmatrix}, \quad D_{n, 7} = 2.1137,
\]

\[
C_{n, 7} = \begin{bmatrix}
-3.2160, 0.1530, 7.0760
\end{bmatrix},
\]

\[
A_{n, 10} = \begin{bmatrix}
-0.1118, 0.0191, -0.4453 \\
-13.5594, 0.7821, -12.5857
\end{bmatrix},
\]

\[
B_{n, 10} = \begin{bmatrix}
-1.5228 \\
-26.2532 \\
-0.8847
\end{bmatrix}, \quad D_{n, 10} = -2.4424,
\]

\[
C_{n, 10} = \begin{bmatrix}
-5.1790, 0.1630, 2.7770
\end{bmatrix},
\]

图 3 为差残评估函数 \(J(k) \)。根据式 (11) 进行多次仿真可得到阈值 \(J_{th} = 0.2669 \)。当 \(t = 15.450(t = 30.300) \) 时，\(J(k) = 0.2692(0.2730 > J_{th}) \)。检测出故障所用时间 \(T_n \) 分别为 0.450 和 0.300。同时，参考 Corollary 1 方法 [10]，忽略同步切换影响，采用同步切换求解方法，得到仿真结果如图 4 所示。对比图 3 和图 4 可知，Corollary 1 方法与同步切换时无法有效检测出故障，表明了本文方法的有效性。

![图 3 检测结果](image)

![图 4 文献 [10] 方法检测结果](image)

<table>
<thead>
<tr>
<th>不同方法仿真结果对比</th>
<th>公共</th>
<th>本文方法</th>
<th>文献[9]方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>指标 (\gamma^*)</td>
<td>1.5405</td>
<td>2.7564</td>
<td></td>
</tr>
<tr>
<td>(\tau_n^*)</td>
<td>0.25</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>(h_n^*)</td>
<td>2.35</td>
<td>2.55</td>
<td></td>
</tr>
</tbody>
</table>

5 结 论

本文研究了一类非线性 NCS 的故障检测问题.采用切换建模方法,考虑切换律的局部交叠特性和网络因素引起的异步切换问题,将系统建模为局部交叠异步切换系统.提出新的稳定性和 \(H_\infty \) 性能分析方法,并给出了相应的检测滤波器设计方法.以网络化全包线飞行器为例进行仿真,结果表明,所提出的方法能及时检测出故障,且对外部干扰、网络时延和丢包具有鲁棒性,能够有效降低异步切换对检测性能的影响.

参考文献(References)

(责任编辑: 郑晓蕾)