浙江工业大学信息工程学院 杭州 310032
孙明轩
TP273
提出一种新的初态学习律,以放宽常规迭代学习控制方法的初始定位条件.它允许一定的定位误差,在迭代中不需要定位在某一具体位置上,使得学习控制系统具有鲁棒收敛性.针对二阶LTI系统,给出了输入学习律及初态学习律的收敛性充分条件.依据收敛性条件,学习增益的选取需系统矩阵的估计值,但在一定建模误差下,仍能保证算法的收敛性.所提出的初态学习律本身及其收敛性条件均与输入矩阵无关.
孙明轩.初态学习下的迭代学习控制[J].控制与决策,2007,22(8):848-852