融合微粒群的多种群协同进化免疫算法
DOI:
CSTR:
作者:
作者单位:

湖南大学

作者简介:

张英杰

通讯作者:

中图分类号:

A

基金项目:


Multi-population coevolutionary immunodominance clonal selection algorithm combining particle swarm optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种融合微粒群的多种群协同免疫优势克隆选择算法(PMCICA). 该算法将生态学中的协同进化思想
    引入人工免疫算法中, 各子种群内部通过免疫优势克隆选择操作加快了种群收敛速度; 所有子种群共享经过改进微
    粒群优化的高层优良库, 实现了整个种群信息共享与协同进化. 针对旅行商问题(TSP) 的多个实验结果表明, 该算法
    在收敛速度与最优解等方面均取得了较好的效果.

    Abstract:

    Multi-population coevolutionary immunodominance clonal selection algorithm combining particle swarm
    optimization(PMCICA) is proposed. Enlightened by the knowledge of ecological environment and population competition,
    the cooperative evolution in the field of ecology is incorporated into artificial immune system. The convergent speed of
    algorithm is enhanced by local optimization immunodominance operating, clonal selection operation within the species.
    All subpopulations share one memory which is also used as a leader set consisting of the dominant representatives of each
    evolved subpopulation. The high level memory is optimized by using an improved particle swarm optimization(IPSO).
    Through those operations, information is shared among populations for co-evolution. The experiments on traveling salesman
    problems(TSP) benchmarks show that the proposed algorithm is capable of improving the search performance significantly
    in convergent speed and precision.

    参考文献
    相似文献
    引证文献
引用本文

张英杰 刘朝华.融合微粒群的多种群协同进化免疫算法[J].控制与决策,2010,25(11):1657-1662

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-09-23
  • 最后修改日期:2009-12-29
  • 录用日期:
  • 在线发布日期: 2010-11-20
  • 出版日期:
文章二维码