基于HsMM的系统在线故障预报
DOI:
CSTR:
作者:
作者单位:

1. 江南大学通信与控制工程学院
2. 江南大学信控学院

作者简介:

张正道

通讯作者:

中图分类号:

基金项目:

;中国博士后基金项目(20080431067)


On-line fault prediction of system based on hiding semi Markov model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对故障预报中系统剩余寿命难以精确估计的问题, 提出基于隐半马尔可夫模型(HsMM) 的系统在线故障
    预报方法. 首先重新设计HsMM模型结构, 利用模糊?? 均值聚类(FCM) 方法化连续取值的系统输入输出变量为有限
    集合内取值, 简化了建模计算过程. 在实现对故障检测的同时, 利用模型的状态驻留参数估计系统的剩余寿命, 从而
    实现系统的故障预报. 利用连续搅拌反应釜(CSTR) 模型进行仿真验证, 在输入输出数据含有噪声的情况下, 较准确
    地估计了系统的剩余寿命, 从而表明了方法的有效性.

    Abstract:

    To solve the problem of accurate forecasting of remaining-useful-life, an on-line fault prediction method based
    on hiding semi Markov model(HsMM) is proposed in this paper. The fuzzy ??-means(FCM) clustering algorithm is used to
    cluster the input-output data of system. The variables with continuous value are transformed to discrete value variables. Then,
    the structure of HsMM is redesigned, and the modeling process of HsMM is simplified. The fault detection is accomplished
    by the HsMM model which is established with data of normal system. At the same time, the remaining-useful-life can be
    forecasted by the time duration of the hidden states. In addition, the approximate time when the fault has established is
    estimated. Therefore, the fault prediction is also accomplished. By using the continuous stirred tank reactor(CSTR) as the
    simulation model, the proposed method can forecast the remaining-useful-life of failure system accurately when the data of
    system has noise.

    参考文献
    相似文献
    引证文献
引用本文

张正道, 崔宝同.基于HsMM的系统在线故障预报[J].控制与决策,2010,25(12):1853-1856

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-10-09
  • 最后修改日期:2010-01-15
  • 录用日期:
  • 在线发布日期: 2010-12-20
  • 出版日期:
文章二维码