基于信息熵的专家聚类赋权方法
DOI:
CSTR:
作者:
作者单位:

空军工程大学,工程学院

作者简介:

周漩

通讯作者:

中图分类号:

O236

基金项目:


Method for determining experts’ weights based on entropy and cluster
analysis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    鉴于群组决策专家赋权方法研究中, 现有赋权方法虽然考虑了专家给出的排序向量的一致性, 但缺乏对排
    序向量信息相似性的度量, 导致可能出现排序向量与群体共识相近, 但信息不确定性较大的专家被赋予了与其他专
    家相同权重的问题. 基于此, 提出一种基于信息熵的专家聚类赋权方法, 运用信息相似系数对排序向量进行聚类分
    析, 根据聚类结果和排序向量的信息熵来确定专家的权重. 具体算例表明, 该方法有效且可行.

    Abstract:

    According to the methods of determining experts’ weights in group decision-making, the existing methods take
    into account the consistency of experts’ collating vectors, but it is lack of the measure of its information similarity. So it
    may occur that although the collating vector is similar to the group consensus, information uncertainty is great of a certain
    expert. However, it is given the same weight to the other experts. For this, a method for deriving experts’ weights based on
    entropy and cluster analysis is proposed, in which the collating vectors of all experts are classified with information similarity
    coefficient, and the experts’ weights are determined according to the result of classification and entropy of collating vectors.
    Finally, a numerical example shows that the method is effective and feasible.

    参考文献
    相似文献
    引证文献
引用本文

周漩, 张凤鸣, 惠晓滨,等.基于信息熵的专家聚类赋权方法[J].控制与决策,2011,26(1):153-156

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-11-03
  • 最后修改日期:2009-12-28
  • 录用日期:
  • 在线发布日期: 2011-01-20
  • 出版日期:
文章二维码