基于ART2的Q学习算法研究
DOI:
CSTR:
作者:
作者单位:

浙江工业大学

作者简介:

姚明海

通讯作者:

中图分类号:

基金项目:


Study on Q-learning Algorithm Based on ART2
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决??学习应用于连续状态空间的智能系统所面临的“维数灾难”问题, 提出一种基于ART 2 的??学习算法. 通过引入ART 2 神经网络, 让??学习Agent 针对任务学习一个适当的增量式的状态空间模式聚类, 使Agent无需任何先验知识, 即可在未知环境中进行行为决策和状态空间模式聚类两层在线学习, 通过与环境交互来不断改进控制策略, 从而提高学习精度. 仿真实验表明, 使用ARTQL 算法的移动机器人能通过与环境交互学习来不断提高导航性能.

    Abstract:

    In order to solve the problem of dimension disaster which may be produced by applying Q-learing to intelligent
    system of continuous state-space, this paper proposes a  Q-learning algorithm based on ART 2 and gives the specific steps. Through introducing the ART 2 neural network in the Q-learning algorithm, Q-learning Agent in view of the duty learns an appropriate incremental clustering of state-space model, so Agent can carry out decision-making and a two-tiers online learning of state-space model cluster in unknown environment without any priori knowledge. Through the interaction with the environment unceasingly alternately to improve the control strategies, the learning accuracy is increased. Finally, the mobile robot navigation simulation experiments show that, using the ARTQL algorithm, motion robot can improve its navigation performance continuously by interactive learning with the environment.

    参考文献
    相似文献
    引证文献
引用本文

姚明海, 瞿心昱, 李佳鹤,等.基于ART2的Q学习算法研究[J].控制与决策,2011,26(2):227-232

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-11-25
  • 最后修改日期:2010-06-18
  • 录用日期:
  • 在线发布日期: 2011-02-20
  • 出版日期:
文章二维码