基于克隆多尺度协同开采的离散微粒群算法
DOI:
CSTR:
作者:
作者单位:

1. 哈尔滨工程大学
2. 黑龙江科技学院
3.

作者简介:

陶新民

通讯作者:

中图分类号:

基金项目:

中国博士后科学基金;中国博士点新教师基金;黑龙江省博士后基金


Discrete particle swarm optimization based on clone multi-scale
cooperative exploitation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种克隆多尺度协同开采的离散微粒群算法. 多尺度变异概率根据粒子适应值大小进行动态调节, 在
    算法初期通过大尺度概率变异增加算法多样性, 后期通过逐渐减小的小尺度变异提高算法在最优解附近的局部精确
    解搜索性能, 对当前最优解进行克隆选择, 可进一步增强算法逃出局部极小解的能力以及所求解的精度. 将算法应用
    于5 个benchmark 函数优化问题并与其他算法比较, 结果表明该算法不仅能增强全局解搜索性能, 同时最优解的精度
    也有所提高.

    Abstract:

    A discrete particle swarm optimization(DPSO) algorithm based on multi-scale cooperative clone mutation
    (MSCMDPSO) is proposed. The clone mutation operator with multi-scale possibilities is introduced on the current optimical
    solution, which can not only improve the ability of local search, but also keep the abilities of global space search and escaping
    from local optima. The mutation operator with large-scale possibilities can be utilized to quickly localize the global optimized
    space at the early evolution. The scale-changing strategy produces a smaller multi-scale mutation operators according to the
    variation of the fitness value and makes mutation operators with smaller-scale possibilities implement local accurate minima
    solution search at the late evolution. The experiment studies on 5 standard benchmark functions, and the experimental results
    show the proposed method can not only effectively solve problem of lack of local search ability, but also significantly speed
    up the convergence and improve the stability.

    参考文献
    相似文献
    引证文献
引用本文

陶新民, 徐晶, 王妍,等.基于克隆多尺度协同开采的离散微粒群算法[J].控制与决策,2011,26(5):700-706

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-02-01
  • 最后修改日期:2010-05-21
  • 录用日期:
  • 在线发布日期: 2011-05-20
  • 出版日期:
文章二维码