改进粒子滤波与预测滤波相结合的单星敏姿态估计
DOI:
CSTR:
作者:
作者单位:

1. 中国航天科工集团第三研究院8358研究所
2. 中国科学院光电研究院

作者简介:

张惟

通讯作者:

中图分类号:

基金项目:

国家自然科学基金资助项目;科技部863计划项目资金


Star-sensor-based attitude estimation fusing improved particle filter and
predictive filter
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对卫星姿态估计的非线性、非高斯特性, 提出一种粒子滤波和预测滤波相结合的估计方法, 在无角速率测
    量时, 首先利用预测方法在线估计系统模型误差和姿态角速度, 再通过改进的规则化粒子滤波器估计姿态四元数. 粒
    子初始化和重要性函数等的设计加快了算法的收敛速度, 预测方法的引入有效降低了粒子维数. 在某通用小卫星平
    台上进行仿真, 并与扩展卡尔曼滤波(EKF) 比较, 所得结果表明, 算法在不同初始姿态估计时具有较好的稳定性和收
    敛精度. 算法还为粒子滤波和无陀螺定姿的研究提供了参考.

    Abstract:

    For the characterization of nonlinear and non-Gaussian, an estimation method fusing particle filter and predictive
    filter is presented for the satellite attitude determination by using solely star sensor observations. At first, the system model
    error parameter and attitude angular rate are estimated online based on predictive filter. Then the attitude quaternion is
    estimated by the improved regularized particle filter. By designing proper particle initialization, important function, and
    so on, the algorithm convergence rate is speeded up. The dimension of the particle filter is effectively reduced by fusing
    predictive filter. A simulation is carried out on a general small satellite platform. Compared with the extended Kalman
    filter(EKF), the result shows that the algorithm can converge fast and has good stable accuracy with respect to different initial
    attitude conditions. The algorithm provides reference to particle filter design and attitude determination without gyro as well.

    参考文献
    相似文献
    引证文献
引用本文

张惟,林宝军.改进粒子滤波与预测滤波相结合的单星敏姿态估计[J].控制与决策,2011,26(5):655-660

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-03-17
  • 最后修改日期:2010-11-21
  • 录用日期:
  • 在线发布日期: 2011-05-20
  • 出版日期:
文章二维码