引用本文:孙枫,唐李军.基于cubature Kalman filter的INS/GPS组合导航滤波算法[J].控制与决策,2012,27(7):1032-1036
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】 附件
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于cubature Kalman filter的INS/GPS组合导航滤波算法
孙枫 唐李军
哈尔滨工程大学自动化学院
摘要:

INS/GPS 组合导航系统的本质是非线性的, 为改善非线性下INS/GPS 组合导航精度, 提出将一种新的非线
性滤波cubature Kalman filter(CKF) 应用于INS/GPS 组合导航中. 为此, 建立了基于平台失准角的非线性状态模型和
以速度误差及位置误差描述的观测模型, 分析了CKF 滤波原理, 设计了INS/GPS 组合滤波器, 对组合导航非线性模
型进行了仿真. 仿真结果显示, 相对于扩展卡尔曼滤波(EKF), CKF 降低了姿态、位置和速度估计误差, CKF 更适合于
处理组合导航的状态估计问题.

关键词:  

INS/GPS组合导航|非线性模型|CKF|组合滤波

DOI:
分类号:
基金项目:

水下重力磁力导航理论与技术研究

INS/GPS integrated navigation filter algorithm based on cubature
Kalman filter
Abstract:

The essence of INS/GPS navigation is nonlinear. To deal with the accuracy of INS/GPS navigation under
nonlinear, a new nonlinear filtering method, cubature Kalman filter(CKF), is applied to the INS/GPS navigation. Therefor, the
nonlinear state model based on the platform misalignment angle and the observation model described by the velocity error and
position error is established, the CKF filtering principle is analyzed and the INS/GPS integrated filter is designed to simulate
nonlinear model. Simulation results show that CKF reduces the estimation errors of attitude, position and speed compared
with extended Kalman filter(EKF), and CKF prefers to deal with the state estimation problem of integrated navigation.

Key words:  

INS / GPS integrated navigation| nonlinear model| CKF|integrated filter

用微信扫一扫

用微信扫一扫