基于灰关联分析的KFCM-LSSVM蒸发过程软测量
DOI:
CSTR:
作者:
作者单位:

中南大学

作者简介:

钱晓山

通讯作者:

中图分类号:

基金项目:


Soft sensor of based on grey correlation analysis and KFCM-LSSVM in
evaporation process
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对氧化铝蒸发过程出口浓度在线检测问题, 提出一种基于灰色关联分析和核模糊聚类相结合的多支持
    向量机蒸发过程建模方法. 该方法采用灰色关联分析提取影响出口浓度较大的变量, 再用核模糊聚类算法将样本划
    分成不同的子类, 并对各子类构建的支持向量机模型的输出综合加权得到最终输出. 对蒸发过程生产数据进行实验,
    并与核模糊聚类最小二乘支持向量机(KFCM-LSSVM) 相比较, 结果表明新模型鲁棒性较强、精度较高、泛化性更好,
    可以用于蒸发过程的优化控制.

    Abstract:

    Aiming at the online testing problem of outlet concentration in the evaporation process of alumina production, a
    multi-support vector machine modeling method based on the gray relational analysis and kernel fuzzy ??-means clustering in
    the evaporation process is proposed. Variable factors of greater correlation with outlet concentration are selected by using
    grey relational analysis, these training samples constituted by these factors are divided into subsets with different cluster
    center by using kernel fuzzy ??-means clustering, and output is obtained finally by summing each support vector machines
    model’s output comprehensive weighting. The experimental results of industrial production data of evaporation process
    show that, compared with kernel fuzzy cluster method and least squares support vector machine(KFCM-LSSVM) model, the
    proposed model can get good robustness, high accuracy, and better generalization, which can be used for the optimal control
    of the evaporation process.

    参考文献
    相似文献
    引证文献
引用本文

钱晓山, 阳春华.基于灰关联分析的KFCM-LSSVM蒸发过程软测量[J].控制与决策,2012,27(12):1800-1804

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-04-06
  • 最后修改日期:2011-11-11
  • 录用日期:
  • 在线发布日期: 2012-12-20
  • 出版日期:
文章二维码