基于广义相关系数的后非线性盲信号分离算法
DOI:
CSTR:
作者:
作者单位:

海军工程大学

作者简介:

张贤彪

通讯作者:

中图分类号:

TM46

基金项目:

国家自然科学基金项目;博士后科学基金特别资助;国家863计划项目


A blind Source Separation Algorithm for Post-Nonlinear Mixture Based on Generalized Correlation Coefficient
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于互信息最小化的独立性测度对各分离信号间的非线性相关度度量没有归一化的问题, 提出一种基于广义相关系数的盲信号分离(BSS) 算法. 首先选取后非线性混叠模型(PNL) 分析基于广义相关系数的独立性测度; 然后采用Gram-Charlier 扩展形式估计输出参数并获取评价几率函数, 结合最陡下降法求得分离矩阵和参数化可逆非线性映射的算法迭代公式. 仿真结果表明, 采用所提出的算法能够定量分析各分离信号间的非线性相关程度, 有效分离后非线性混叠信号.

    Abstract:

    According to the problem that the independence criterion based on the minimization of mutual information is
    not normalized, a blind source separation(BSS) algorithm for post-nonlinear mixture(PNL) based on general correlation coefficient is introduced in this paper. Firstly, the PNL is taken as an indraft point to summarize this algorithm,which is the more practicable approximation to realism rather than linear model,meanwhile the independence criterion based on the generalized correlation coefficient is discussed. Then score function based on a Gram-Charlier expansion of densities is proposed. Finally, combined with the steepest descent method, the computations of regular matrix and parametric nonlinear mapping are given. The simulation results show that the proposed method is effective in BSS for the PNL and for the quantitative analysis of nonlinear correlation between variables.

    参考文献
    相似文献
    引证文献
引用本文

张贤彪 黄高明 刘德志 陶涛.基于广义相关系数的后非线性盲信号分离算法[J].控制与决策,2012,27(10):1521-1526

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-04-25
  • 最后修改日期:2011-09-06
  • 录用日期:
  • 在线发布日期: 2012-10-20
  • 出版日期:
文章二维码