基于谱聚类欠取样的不均衡数据SVM分类算法
DOI:
CSTR:
作者:
作者单位:

1. 哈尔滨工程大学
2.

作者简介:

陶新民

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金面上项目;中国博士后科学基金;中国博士点新教师基金;黑龙江省博士后基金项目


SVM classifier for unbalanced data based on spectrum cluster-based
under-sampling approaches
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于谱聚类欠取样的不均衡数据SVM分类算法。该算法首先在核空间中对多数类样本进行谱聚类,然后在每个聚类中根据聚类大小和该聚类与少数类样本间的距离,选择具有代表意义的信息点,最终实现训练样本间的数目均衡。实验中将该算法同其他不均衡数据预处理方法比较,结果表明该算法不仅能有效提高SVM算法对少数类的分类性能,而且总体分类性能及运行效率都有明显提高。

    Abstract:

    An under-sampling unbalanced dataset support vector machine(SVM) algorithm based on spectrum cluster is
    presented. Majority instances are clustered by using spectrum cluster in kernel space for resampling reprentative samples
    with cluster information. The number of selected samples in each cluster is dependent on the size of each cluster and the
    distance of the cluster to the all minority instances, which can not only reduce the number of majority instances, but also the
    SVM classification performance under unbalanced dataset is improved by using the proposed method. In the experiments, the
    proposed approach is compared with other data-preprocess methods for unbalanced dataset classification. The experimental
    results show that the proposed method can not only improve classification performance of SVM algorithm in the minority
    class data, but also increase the overall classification performance and effectivity.

    参考文献
    相似文献
    引证文献
引用本文

陶新民 张冬雪 付丹丹 郝思媛.基于谱聚类欠取样的不均衡数据SVM分类算法[J].控制与决策,2012,27(12):1761-1768

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-07-22
  • 最后修改日期:2011-10-08
  • 录用日期:
  • 在线发布日期: 2012-12-20
  • 出版日期:
文章二维码