基于随机黑洞和逐步淘汰策略的多目标粒子群优化算法
DOI:
CSTR:
作者:
作者单位:

重庆大学

作者简介:

程杉

通讯作者:

中图分类号:

TP18

基金项目:

多目标BCC算法研究及其在配电网多故障抢修中的应用;国家“111”引智计划项目;“输配电装备及系统安全与新技术”国家重点实验项目


Multi-objective Particle Swarm Optimization Algorithm Based on Random Black Hole Mechanism and Step-by-step Elimination Strategy
Author:
Affiliation:

Chongqing University

Fund Project:

;National;State Key Laboratory of Power Transmission Equipment & System Security and New Technology

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种基于随机黑洞粒子群算法(RBH-PSO) 和逐步淘汰策略的多目标粒子群优化(MRBHPSO-SE) 算法. 利用RBH-PSO 全局优化能力强和收敛速度快的优点逼近Pareto 最优解; 为了避免拥挤距离排序策略的缺陷, 提出逐步淘汰策略, 并将其应用到下一代粒子的选择策略中. 同时, 动态选择领导粒子, 运用动态惯性权重系数和变异操作
    来增强种群全局寻优能力, 以及避免早熟收敛. 利用具有不同特点的测试函数进行验证, 结果表明, 与同类算法相比, 该算法具有较高的精度并兼顾优化解的多样性.

    Abstract:

    A multi-objective particle swarm optimization algorithm based on the random black hole particle swarm optimization(RBH-PSO) and step-by-step elimination strategy is proposed. The Pareto optimal solutions are approached by its advantage of speeding up the convergence and improving the performance of global optimizer greatly. To avoid the disadvantage of crowding distance sorting technique, the step-by-step elimination(SE) strategy is proposed, which is used to select the particles from one iteration to another. In addition, dynamic selection of leader particle for each particle, adaptive inertia weight and a special mutation operation are incorporated to enhance the global exploratory capability and avoid premature convergence. The performance of the proposed algorithm is tested on a set of well-known benchmark functions and compared with several representative multi-objective optimization algorithms. Simulation results show that the MRBHPSO-SE algorithm can converge to the global optimal with high accuracy while keeping the good diversity of the Pareto solutions.

    参考文献
    相似文献
    引证文献
引用本文

陈民铀 程杉.基于随机黑洞和逐步淘汰策略的多目标粒子群优化算法[J].控制与决策,2013,28(11):1729-1734

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-08-03
  • 最后修改日期:2012-12-23
  • 录用日期:
  • 在线发布日期: 2013-11-20
  • 出版日期:
文章二维码