基于稀疏流形聚类嵌入模型和L1范数正则化的标签错误检测
CSTR:
作者:
作者单位:

合肥电子工程学院 a. 通信对抗系,b. 安徽省电子制约技术重点实验室,合肥230037.

作者简介:

夏建明

通讯作者:

中图分类号:

TP181

基金项目:

国家自然科学基金项目(61272333);安徽省自然科学基金项目(1208085MF94, 1308085QF99).


Labeling errors detecting and correcting algorithm based on sparse manifold clustering and embedding and L1 norm regularization
Author:
Affiliation:

a. Department of Communication Countermeasure,b. Key Laboratory of Electronic Restriction,Electronic Engineering Institute,Hefei 230037,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    综合利用含错标签中的有用信息和数据结构中蕴含的鉴别信息, 提出一种基于稀疏流形聚类嵌入模型和L1范数正则化的标签错误检测修正方法. 首先, 用稀疏流形聚类嵌入模型将数据投影到易分类的空间, 利用标注正确的极少量样本和最近邻分类器获得新标签; 然后, 构造标签错误检测模型, 获得仅含0、1 元素的检测向量, 正确、错误的标签分别对应着1、0 的位置; 最后, 给出了相应的优化算法及收敛证明, 并在相关实验上验证了算法的有效性.

    Abstract:

    As to detect and correct the labeling errors, a labeling errors detecting and correcting algorithm based on sparse manifold clustering and embedding and L1norm regularization is proposed. The proposed algorithm is based on the useful information in the original labels and the natural discriminating information which is contained in the data structure. Firstly, the original data are projected to the new space by using the sparse manifold clustering and embedding model. Then, a nearest neighbor classifier and a very small amount samples which are labeled correctly are used to obtain new labels for the original data. Meanwhile, the constructing labeling error detection model is built and then the sparse label detection vector which consists of 0 and 1 is obtained to modify the detection errors. The inaccurate and accurate labels correspond to 0 and 1 in the label detection vector respectively. Finally, the convex optimization scheme is introduced to solve the optimization problem and the convergence proofs are given. The experiment results show the effectiveness of the proposed algorithm based on the artificial data of complex manifold structure and the typical low-dimensional, high-dimensional data.

    参考文献
    相似文献
    引证文献
引用本文

夏建明 杨俊安.基于稀疏流形聚类嵌入模型和L1范数正则化的标签错误检测[J].控制与决策,2014,29(6):1103-1108

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-03-24
  • 最后修改日期:2013-12-04
  • 录用日期:
  • 在线发布日期: 2014-06-20
  • 出版日期:
文章二维码