基于粒计算的最简决策规则挖掘算法
CSTR:
作者:
作者单位:

太原理工大学信息工程学院,太原030024.

作者简介:

陈泽华

通讯作者:

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61402319);山西省回国留学人员科研项目(2013-031).


Mining algorithm for concise decision rules based on granular computing
Author:
Affiliation:

School of Information Engineering,Taiyuan University of Technology,Taiyuan 030024,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统的规则挖掘算法通常先约简属性再约简属性值. 该方法存在冗余计算, 当样本集增大时, 复杂性急剧增加. 对此提出一种基于粒计算的最简决策规则挖掘算法. 首先, 在不同粒度空间下计算条件粒与决策粒之间的粒关系矩阵; 然后, 将粒关系矩阵中隐含的信息H 1H 2 作为启发式算子, 按信息粒约简属性值; 最后, 去除冗余属性并设置终止条件, 实现决策规则的快速挖掘. 理论分析和实验结果表明, 所提出的算法可以获得更简洁的规则, 且规则的泛化能力更强.

    Abstract:

    The traditional rule mining algorithm includes attribute reduction and attribute value reduction, which incorporates redundant computation. The complexity of the algorithm will increase dramatically as the sample dataset increases. Therefore, the granular computing(GrC) method is adopted. Firstly, the granular-relation matrices between condition granules and decision granules in different granular spaces are computed. Then the attribute value is reduced according to H 1 and H 2 which are hidden in the granular-relation matrices. Furthermore, redundant attributes are removed and the termination condition is set, which can accelerate the mining of decision rules. The theoretical analysis and experimental results show that proposed algorithm can acquire more concise rules, and the rules have better generalizing ability.

    参考文献
    相似文献
    引证文献
引用本文

陈泽华 张裕 谢刚.基于粒计算的最简决策规则挖掘算法[J].控制与决策,2015,30(1):143-148

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-01-20
  • 最后修改日期:2014-04-17
  • 录用日期:
  • 在线发布日期: 2015-01-20
  • 出版日期:
文章二维码