一种基于属性关系的特征选择算法
CSTR:
作者:
作者单位:

1. 东南大学信息科学与工程学院,南京210096;
2. 国网智能电网研究院信息通信研究所,南京210003.

作者简介:

胡静

通讯作者:

中图分类号:

TP391

基金项目:


A feature selection algorithm based on relationship between attributes
Author:
Affiliation:

1. School of Information Science and Engineering,Southeast University,Nanjing 210096,China;
2. Research Institute of Information Technology & Communication,State Grid Smart Grid Research Institute,Nanjing 210003,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对于包含大量特征的数据集, 特征选择已成为一个研究热点, 能剔除无关和冗余特征, 将会有效改善分类准确性. 对此, 在分析已有文献的基础上, 提出一种基于属性关系的特征选择算法(NCMIPV), 获取优化特征子集, 并在UCI 数据集上对NCMIPV 算法进行性能评估. 实验结果表明, 与原始特征子集相比, 该算法能有效降低特征空间维数, 运行时间也相对较短, 分类差错率可与其他算法相比, 在某些场合下性能明显优于其他算法.

    Abstract:

    Feature selection has become a heated research issue for datasets that contain large numbers of features and has the ability to remove irrelevant and redundant features and improve classification accuracy in an effective fashion. A feature selection algorithm based on relationship between attributes named NCMIPV is proposed to acquire the optimized feature subset based on the analysis of existing relevant literatures, and the performance of NCMIPV on UCI datasets is evaluated. Experiment results show that compared with original datasets, this algorithm tends to shrink the dimension of feature space effectively in a comparatively shorter length of time. Moreover, the misclassification rate appears to rival other algorithms. Overall performance of the proposed algorithm is obviously superior to its counterparts in certain situation.

    参考文献
    相似文献
    引证文献
引用本文

胡静 华俊 姜羽 宋铁成 刘世栋 郭经红.一种基于属性关系的特征选择算法[J].控制与决策,2015,30(10):1903-1906

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-07-15
  • 最后修改日期:2015-03-09
  • 录用日期:
  • 在线发布日期: 2015-10-20
  • 出版日期:
文章二维码