基于项权值变化和SCCI 框架的加权正负关联规则挖掘
CSTR:
作者:
作者单位:

1. 广西财经学院信息与统计学院,南宁530003;
2. 福建师范大学软件学院,福州350007;
3. 美国系统生物研究所,西雅图WA98109;
4. 广西教育学院人事处,南宁530023.

作者简介:

黄名选

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金项目(61262028, 61363037);广西自然科学基金项目(2012GXNSFAA053235);教育部人文社会研究青年基金项目(12YJCZH074);广西财经学院数量经济学创新团队项目(2014CX01);广西教育厅科研项目(201203YB225, 2013LX236, KY2015YB337, KY2015YB483);广西教育学院科研项目(B2012007).


Weighted positive and negative association rules mining based on dynamic item weight and SCCI framework
Author:
Affiliation:

1. College of Information and Statistics,Guangxi University of Finance and Economics,Nanning 530003,China;
2. Faculty of Software,Fujian Normal University,Fuzhou 350007,China;
3. Institute for Systems Biology of USA, Seattle WA 98109,USA; 
4. Personnel Department, Guangxi College of Education, Nanning 530023, China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    给出项权值变化的数据模型形式化表示, 构建新的加权项集剪枝策略及其模式评价框架SCCI (supportconfidence-correlation-interest), 提出基于项权值变化和SCCI 评价框架的加权正负关联规则挖掘算法. 该算法考虑了项权值变化的数据特点, 采用新的剪枝方法和评价框架, 通过项集权值简单计算和比较, 挖掘有效的加权正负关联规则. 实验结果表明, 该算法能够有效地减少候选项集数量和挖掘时间, 挖掘出有趣的关联模式, 避免无效模式出现, 挖掘效率高于相比较的现有算法, 解决了项权值变化的加权负模式挖掘问题.

    Abstract:

    The formal definition of data model for dynamic item weight is given,and a new pruning strategy for weighted itemsets, as well as an evaluation framework, support-confidence-correlation-interest(SCCI), of weighted association patterns is proposed. Based on dynamic item weight and SCCI, an algorithm for the mining of weighted positive and negative association rules is presented. With the characteristics of the dynamic item weighted data taken into consideration, new pruning methods and evaluation standards are used. Effective weighted frequent itemsets, as well as negative itemsets are mined from the massive weighted database by using the proposed algorithm, and valid weighted positive and negative association rules can be mined by means of simple computation and comparison of itermset weight. The experimental results show that, by using the proposed algorithm, the mining time and the number of candidate itemsets are effectively reduced. Interesting association patterms are obtained, and ineffective patterns are successfully avoided. Compared with the existing mining algorithms, the mining efficiency of this approach is greatly improved, and the problem of the mining of weighted negative patterns is solved based on dynamic item weight.

    参考文献
    相似文献
    引证文献
引用本文

黄名选 黄发良 严小卫 兰慧红.基于项权值变化和SCCI 框架的加权正负关联规则挖掘[J].控制与决策,2015,30(10):1729-1741

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-07-15
  • 最后修改日期:2015-01-06
  • 录用日期:
  • 在线发布日期: 2015-10-20
  • 出版日期:
文章二维码