三态协调搜索多目标粒子群优化算法
CSTR:
作者:
作者单位:

华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海200237.

作者简介:

王学武

通讯作者:

中图分类号:

TP301

基金项目:

上海市自然科学基金项目(14ZR1409900);上海市科委基础研究重点项目(12JC1403400).


Multi-objective particle swarm optimization algorithm based on three status coordinating searching
Author:
Affiliation:

Key Laboratory of Advanced Control and Optimization for Chemical Processes,Ministry of Education,East China University of Science and Technology,Shanghai 200237,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种三态协调搜索多目标粒子群优化算法. 该算法提出的三态指导粒子选择策略可以很好地协调算法的局部和全局搜索能力, 且算法改进了传统的外部档案保存机制, 同时引入3 种突变因子, 使获得的非劣解具有更好的分散性. 通过对标准测试函数的求解, 并与其他经典多目标优化算法比较, 表明了新算法在收敛性和多样性方面均有较大的优越性. 最后分析了区域划分系数对所提出算法性能的影响.

    Abstract:

    A multi-objective particle swarm optimization algorithm based on three status coordinating searching(TC-MOPSO) is presented. The three status strategy proposed for choosing guides is useful to coordinate local and global search capability. The traditional external archives update mechanism is improved and three kinds of mutation factors are introduced, which contribute to making the Pareto solutions have a better distribution. By solving several standard test functions and comparing with three classical multi-objective optimization algorithms, it is proved that the new algorithm has high competition in terms of convergence and diversity metrics. Finally, the influence of the regionalism coefficient on the performance of the proposed algorithm is analyzed.

    参考文献
    相似文献
    引证文献
引用本文

王学武 薛立卡 顾幸生.三态协调搜索多目标粒子群优化算法[J].控制与决策,2015,30(11):1945-1952

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-09-14
  • 最后修改日期:2015-01-27
  • 录用日期:
  • 在线发布日期: 2015-11-20
  • 出版日期:
文章二维码