3 种伪谱最优控制方法的积分形式及统一性证明
CSTR:
作者:
作者单位:

1. 南京理工大学瞬态物理重点实验室,南京210094;
2. 中国北方工业公司研究发展部,北京100053.

作者简介:

戴明祥

通讯作者:

中图分类号:

TP13

基金项目:


Integral form and equivalence proof of three pseudospectral optimal control methods
Author:
Affiliation:

1. National Key Laboratory of Transient Physics,Nanjing University of Science and Technology,Nanjing 210094, China;
2. Research and Development Department,China North Industries Corporation,Beijing 100053,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了进一步提高伪谱最优控制方法的计算精度, 削弱微分形式伪谱法对状态变量近似误差的放大幅度, 研究基于积分形式的伪谱最优控制方法. 依次给出3 种伪谱法的积分伪谱离散形式, 证明当Lagrange 多项式对状态变量的近似误差等于零时, Gauss 伪谱法和Radau 伪谱法的积分形式与微分形式是等价的, 而Legendre 伪谱法的积分形式与微分形式是不等价的, 并分析了其不等价的原因.

    Abstract:

    In order to further improve the accuracy of the pseudospectral optimal control method, and weaken the amplification of approximation errors of state variables in the differential pseudospectral method, the integral pseudospectral optimal control method is studied. The integral pseudospectral discrete forms of three pseudospectral methods are presented, which are Legendre pseudospectral method, Gauss pseudospectral method and Radau pseudospectral method, respectively. When the approximation errors of Lagrange polynomials for state variables are equal to zero, it is proved that the differential and integral forms of Gauss pseudospectral method and Radau pseudospectral method are equivalent, but that of Legendre pseudospectral method is not equivalent, and the reason of nonequivalence is also analyzed.

    参考文献
    相似文献
    引证文献
引用本文

戴明祥 杨新民 何颖 易文俊.3 种伪谱最优控制方法的积分形式及统一性证明[J].控制与决策,2016,31(6):1123-1127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-05-05
  • 最后修改日期:2015-10-01
  • 录用日期:
  • 在线发布日期: 2016-06-20
  • 出版日期:
文章二维码