基于属性重要度的风险决策粗糙集属性约简
CSTR:
作者:
作者单位:

1. 重庆邮电大学a. 理学院,b. 计算机科学与技术学院,重庆400065;
2. 北京邮电大学计算机学院,北京100876.

作者简介:

张清华

通讯作者:

中图分类号:

TP18

基金项目:

国家自然科学基金项目(61472056);大学生科研训练计划项目(A2014-45).


Risk DTRS attribute reduction based on attribute importance
Author:
Affiliation:

1a. School of Science,1b. School of Computer Science and Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;
2. School of Computer Science,Beijing University of Posts and Telecommunications,Beijing 100876,China.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于Pawlak 粗糙集的属性约简一般保持决策表的正区域不变, 然而由于现实中不同用户对不同约简精度的需求, 获取属性值的实际代价与个人偏好可能不同. 针对决策者主观个人偏好、客观约简精度、获取属性值的实际代价和决策表各区域的误判代价等综合情况, 提出新的约简算法, 并讨论约简代价与约简精度间的关系. 通过遗传算法, 采用启发式方法搜索出局部最优约简子集. 仿真实验表明, 所提出的算法操作性强, 更适合处理实际决策问题.

    Abstract:

    Generally, when talking about attribute reduction of a decision table, it usually keeps the positive region unchanged based on the Pawlak’s rough sets theory. However, the needs may be different for different precision of the reduction in real life as well as the actual cost to obtain attribute values and personal preferences. Based on the risk of personal preference for the subjective aspect, the accuracy of reduction, the actual cost of obtaining attribute value, and the risk of interval misjudgment for the objective aspects, a novel attribute reduction algorithm is proposed. Then, the relationship between the reduction cost and the reduction accuracy is discussed. Based on the genetic algorithm, a heuristic method for searching the local optimal reduction subset is proposed. Simulation experiments show that the algorithm is feasible, and more realistic to deal with practical decision-making problems.

    参考文献
    相似文献
    引证文献
引用本文

张清华 胡荣德 姚龙洋 谢万成.基于属性重要度的风险决策粗糙集属性约简[J].控制与决策,2016,31(7):1199-1205

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-05-25
  • 最后修改日期:2015-12-04
  • 录用日期:
  • 在线发布日期: 2016-07-20
  • 出版日期:
文章二维码