基于量子衍生布谷鸟的脊波过程神经网络及TOC预测
CSTR:
作者:
作者单位:

(1. 东北石油大学计算机与信息技术学院,黑龙江大庆163318;2. 山东科技大学信息科学与工程学院,山东青岛266590;3.中国石油大学(华东)非常规油气与新能源研究院,山东青岛266580)

作者简介:

刘志刚(1979-), 男, 副教授, 博士生, 从事神经网络、量子衍生进化算法的研究;许少华(1962-), 男, 教授, 博士生导师, 从事过程神经网络等研究.

通讯作者:

E-mail: dqpilzg@163.com

中图分类号:

TP183

基金项目:

国家自然科学基金项目(61170132,41330313);黑龙江省自然科学基金项目(F2015021).


Ridgelet process neural networks based on quantum-inspired cuckoo search and application for TOC prediction
Author:
Affiliation:

(1. School of Computer and Information Technology,Northeast Petroleum University;Daqing 163318,China;2. College of Information Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China;3. Institute of Unconventional Oil & Gas and New Energy,China University of Petroleum,Qingdao 266580)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高总有机碳含量(TOC)的预测精度,针对测井曲线的时变、奇异性特征,选用脊波函数作为过程神经元的激励函数,提出一种连续脊波过程神经元网络.模型训练方面首先给出基于正交基展开的梯度下降法;其次为提高模型训练收敛能力,提出一种沿Bloch球面纬线实施莱维飞行的量子衍生布谷鸟算法,并用于模型参数优化;最后将训练好的脊波过程神经网络应用于泥页岩TOC预测,通过相关性选取对TOC响应敏感的测井曲线作为模型特征输入.实验对比结果表明,该方法的预测精度较高,较其他过程神经网络提高7个百分点.

    Abstract:

    To enhance the prediction accuracy of total organic carbon(TOC), and according to time-varying, singularity feature of logging curve, the ridgelet transform function is used as the activation function for process neuron and a continuous ridgelet process neural network is proposed. Firstly, the gradient descent method based on orthogonal basis expansion is proposed. Then, in order to improve the training convergence ability, a quantum-inspired cuckoo search algorithm is proposed and applied to model training, in which, the individual's Lévy flight follows the latitude on the Bloch sphere. Finally, the trained ridgelet process neural network is applied to shale TOC prediction. Some logging curves which have sensitive response to TOC are selected as the model feature inputs by the correlation analysis. Through the comparison with other process neural networks, the experimental result shows that the TOC prediction accuracy increases about 7 percent.

    参考文献
    相似文献
    引证文献
引用本文

刘志刚,许少华,李盼池,等.基于量子衍生布谷鸟的脊波过程神经网络及TOC预测[J].控制与决策,2017,32(6):1115-1120

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-06-16
  • 出版日期:
文章二维码