基于多样性检测的双子群多目标粒子群算法
CSTR:
作者:
作者单位:

(大连理工大学电子信息与电气工程学院,辽宁大连116023)

作者简介:

韩敏(1959-), 女, 教授, 博士生导师, 从事复杂工业系统建模与控制、智能技术及优化算法等研究;张丽君(1993-), 女, 硕士生, 从事智能优化算法的研究.

通讯作者:

E-mail: minhan@dlut.edu.cn

中图分类号:

TP18

基金项目:

国家自然科学基金项目(61374154).


Bi-group multi-objective particle swarm optimization algorithm based on diversity metric
Author:
Affiliation:

(Faculty of Electronic Information and Electrical Engineering,Dalian University of Technology,Dalian 116023,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了平衡多目标粒子群算法的多样性和收敛性,提出一种基于多样性检测的多子群多目标粒子群算法.首先,将多样性检测方法引入到多目标粒子群算法中,并结合多目标粒子群算法的特点进行改进.然后,将种群分为两个不同分工的子群,一个子群保持较好的多样性,在搜索空间进行全局搜索;另一个子群保持较好的收敛性,在Pareto前沿附近进行局部搜索.最后,根据多样性度量指标调整两个子群的搜索行为,以达到兼顾多样性和收敛性的目的.在标准测试问题上的仿真结果表明了所提算法的有效性.

    Abstract:

    In order to keep the balance between the diversity and convergence, a bi-group multi-objective particle swarm optimization algorithm based on diversity metric is propose. Firstly, a diversity metric is introduced to multi-objective particle swarm optimization(MOPSO) algorithm and improved based on its characteristics. Then, the whole swarm is divided to two bi-groups with different searching tasks. One of the groups keeps population's diversity during evolution to search better in the whole search space. The other group keeps its convergence to local search nearby the Pareto front. Further more, the searching behavior of the groups based on the diversity metric is adjusted to balance the diversity and convergence. The simulations on several standard test functions verify the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

韩敏,张丽君.基于多样性检测的双子群多目标粒子群算法[J].控制与决策,2017,32(12):2268-2272

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-11-15
  • 出版日期:
文章二维码