基于正交变换的改进CKF算法
CSTR:
作者:
作者单位:

(空军工程大学航空航天工程学院,西安710038)

作者简介:

秦康(1992-), 男, 博士生, 从事多导航、制导与控制的研究;董新民(1963-), 男, 教授, 博士生导师, 从事飞行器控制理论及运用等研究.

通讯作者:

E-mail: cheny_043@163.com

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61304120,61473307,61603411);航空科学基金项目(20155896026).


Modified CKF algorithm based on orthogonal transformation
Author:
Affiliation:

(College of Aeronautics and Astronautics Engineering,Air Force Engineering University,Xián 710038,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了解决容积卡尔曼滤波(CKF)算法在处理高维问题时出现的非局部采样问题,提出基于采样点正交变换的改进CKF算法(TCKF).从数值积分近似角度导出无迹卡尔曼滤波(UKF)和CKF两种近似滤波算法,并指出CKF只是UKF的一个特例;基于多元Taylor级数展开分析,揭示CKF在克服UKF数值不稳定性问题的同时,引入非局部采样问题;对Cubature点集进行正交变换得到TCKF算法,并从理论上证明,在高维、强非线性等非局部采样问题突出的滤波模型中,TCKF具有比CKF更高的估计精度.仿真实例验证了所提出算法的有效性.

    Abstract:

    In order to solve the nonlocal sampling problem inherent in the cubature kalman filter(CKF) algorithm for high dimensional problems, a methodology based on orthogonal transformation on the cubature points is proposed. Firstly, the unscented Kalman filter(UKF) algorithm and CKF algorithm are deduced from the perspective of numeriacal integration in the gaussian filtering framwork, and it is pointed out that the CKF is virtually a spacial case of the UKF. Then, the performance of the unscened transform(UT) is analyzed based on the multi-dimensional Taylor series, it reveals that the problem of numerical instability of the UKF can be solved by using the CKF, meanwhile the nonlocal sampling problem is introduced. Finally, through the orthogonal transformation of the sampling point in the CKF algorithm, the TCKF algorithm is derived. It is proved theoretically that the TCKF algorithm has higher estimation accuracy than the CKF algorithm in the high-dimentional and strongly nonlinearity situation where local sampling problems are prominent. simulation examples verify the effectiveness of the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

秦康,董新民,陈勇,等.基于正交变换的改进CKF算法[J].控制与决策,2018,33(2):330-336

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-12-21
  • 出版日期:
文章二维码