灾后动态环境下基于MPC的应急运输实时调度
CSTR:
作者:
作者单位:

(国防科技大学系统工程学院,长沙410073)

作者简介:

刘亚杰(1975-), 男, 副教授, 博士, 从事动态不确定性优化方法及其在应急物流、微电网等的应用研究;吴志永(1992-), 男, 硕士生, 从事应急物流的研究.

通讯作者:

E-mail: liuyajie@nudt.edu.cn

中图分类号:

TP273

基金项目:

国家自然科学基金项目(71371181).


Real-time relief transportation planning based on MPC in post-disaster dynamic environment
Author:
Affiliation:

(College of System Engineering,National University of Defense Technology,Changsha410073,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    应急资源运输是灾后应急响应中的一类重要行动.针对强地震后灾区物资供应和伤员转运需求,建立一个多周期应急运输调度模型,基于模型预测控制(MPC)的多周期滚动优化框架,提出相应的运输计划动态调整策略,以适应供应与需求等决策参数的预计不准确性和动态演变性.数值实验验证了所建运输调度模型及所提出动态调整框架的有效性.与传统基于多周期应急运输调度方法相比,所提出方法能够有效减少运输调度的不满足量,并能显著消除预测结果不准确性对不满足量的影响.

    Abstract:

    Emergency resource transportation is a kind of important activity in post-disaster emergency response campaign. A multi-period emergency transportation model is proposed, in which both the delivery of relief commodities and the evacuation of critical population are considered. Then, a rolling-horizon framework based on the model predictive control(MPC) method is innovatively introduced. After that, an adjustment policy is proposed to adapt to the evolution of supply and demand and to satisfy the real-time adjustment requirement caused by the inaccuracy of prediction on supply and demand. The numerical experiments validate the effectiveness of the proposed multi-period relief transportation model and the MPC based rolling-horizon framework. Additionally, compared with the traditional multi-period relief transportation planning method, the proposed method can effectively decrease the amount of total weighted unmet demand, and obviously eliminate the influence on the optimization objective caused by the inaccuracy of predictions.

    参考文献
    相似文献
    引证文献
引用本文

刘亚杰,吴志永.灾后动态环境下基于MPC的应急运输实时调度[J].控制与决策,2018,33(12):2131-2141

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2018-11-30
  • 出版日期:
文章二维码