基于尺度自适应均值偏移优化的TLD跟踪算法
CSTR:
作者:
作者单位:

(1. 天津理工大学电气电子工程学院,天津300384;2. 天津市复杂系统控制理论及应用重点实验室,天津300384;3. 天津理工大学计算机视觉与系统教育部重点实验室,天津300384)

作者简介:

张惊雷(1969-), 男, 教授, 博士, 从事模式识别、图像处理等研究;时鹏(1991-), 男, 硕士生, 从事图像处理、目标跟踪等研究.

通讯作者:

E-mail: zhangjinglei@tjut.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61472278).


A TLD tracking algorithm based on scale-adaptive mean-shift method
Author:
Affiliation:

(1. School of Electrical and Electronics Engineering,Tianjin University of Technology, Tianjin300384,China;2. Tianjin Key Laboratory for Control Theory and Applications in Complicated Systems,Tianjin300384,China;3. Key Laboratory of Computer Vision and System of Ministry of Education of China,Tianjin University of Technology,Tianjin300384,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决目标在形变、遮挡和快速运动时所导致的跟踪失败,在经典TLD算法的框架下,使用尺度自适应均值偏移算法重新设计跟踪器,提出了MS-TLD算法.通过引入颜色直方图特征和尺度自适应,跟踪器能准确跟踪形变和快速运动的目标.设计跟踪-检测反馈机制,通过跟踪器和检测器相互校正,使新算法在目标被遮挡时具有很好的跟踪鲁棒性.采用TB-50标准测试集进行了实验验证与评测,结果表明所提出算法有效克服了由于目标形变、遮挡和快速运动以及背景干扰所导致的跟踪失败,比TLD等4种经典算法具有更好的跟踪准确性和鲁棒性.

    Abstract:

    In order to solve tracking failures caused by objects deformation, occlusion and fast motion, an algorithm called mean shift-tracking learning detection(MS-TLD) under the framework of the classical tracking-learning-detection(TLD) algorithm is proposed, which reconstructs a new tracker using the scale-adaptive mean-shift method. By introducing color histogram features and scale-adaption, the new tracker can track objects with deformation and fast moving. A new tracking-detection feedback strategy for the inter-correction between tracker and detector is designed, by which the proposed algorithm has better robustness when objects are occluded. The TB-50 standard dataset is used to verify and evaluate the proposed method. The experimental results show that the proposed algorithm can overcome the tracking failures caused by objects with deformation, occlusion, fast motion, as well as background clutters, and has better tracking accuracy and robustness compared with the TLD and other 3 classical algorithms.

    参考文献
    相似文献
    引证文献
引用本文

张惊雷,时鹏,温显斌.基于尺度自适应均值偏移优化的TLD跟踪算法[J].控制与决策,2019,34(1):144-150

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-01-18
  • 出版日期:
文章二维码