基于核映射极限学习机的入口氮氧化物预测
CSTR:
作者:
作者单位:

(华北电力大学控制与计算机工程学院,河北保定071003)

作者简介:

金秀章(1969-), 男, 副教授, 博士, 从事大型发电机组先进控制策略等研究;张少康(19-), 男, 硕士生, 从事信号分析与信号处理的研究.

通讯作者:

E-mail:15530204649@163.com.

中图分类号:

TP183

基金项目:


Prediction of inlet NOx based on extreme learning machine of kernel mapping
Author:
Affiliation:

( School of Control and Computer Engineering,North China Electric Power University,Baoding 071003,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对在线贯序极限学习机(OS-ELM)算法隐含层输出不稳定、易产生奇异矩阵和在线贯序更新时没有考虑训练样本时效性的问题,提出一种基于核函数映射的正则化自适应遗忘因子(FFOS-RKELM)算法.该算法利用核函数代替隐含层,能够产生稳定的输出结果.在初始阶段加入正则化方法,通过构造非奇异矩阵提高模型的泛化能力;在贯序更新阶段,通过新到的数据自动更新遗忘因子.将FFOS-RKELM算法应用到混沌时间序列预测和入口氮氧化物时间序列预测中,相比于OS-ELM、FFOS-RELM、OS-RKELM算法,可有效地提高预测精度和泛化能力.

    Abstract:

    To solve the problem that the hidden layer output of an online sequential extreme learning machine(OS-ELM) algorithm is not stable, the singular matrix is easy to produce, and the OS-ELM has no consideration about the training sample timeliness during the sequential updating process, an improved OS-ELM algorithm online sequential extreme learning machine based on adaptive forgetting factor of kernel function mapping(FFOS-RKELM) is presented based on the regularization and adaptive forgetting factor of kernel function mapping. In the FFOS-RKELM algorithm, the kernel function replaces the hidden layer to produce the stable output results. In the initialization phase, the regularization method can improve the generalization ability of the model by constructing a nonsingular matrix. During the sequential updating phase, the forgetting factor can be adjusted automatically according to new data. The FFOS-RKELM algorithm is applied to the prediction of the chaotic time series and the time series of Inlet NOx. Compared with the OS-ELM algoyithm, the FFOS-RELM algorithm and the OS-RKELM algorithm, the proposed algorithm can improve the prediction accuracy and generalization ability more effectively.

    参考文献
    相似文献
    引证文献
引用本文

金秀章,张少康.基于核映射极限学习机的入口氮氧化物预测[J].控制与决策,2019,34(1):213-218

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-01-18
  • 出版日期:
文章二维码