基于信度区间的故障特征约简方法
CSTR:
作者:
作者单位:

(1. 杭州电子科技大学自动化学院,杭州310018;2. 西安交通大学电子与信息工程学院, 西安710049;3. 重庆交通大学信息科学与工程学院, 重庆400074)

作者简介:

徐晓滨(1980-), 男, 教授, 博士, 从事智能信息融合与复杂系统可靠性评估、故障诊断与预测等研究;张明(1991-), 男, 硕士生, 从事基于证据理论的故障诊断的研究.

通讯作者:

E-mail: xuxiaobin1980@163.com.

中图分类号:

TP391

基金项目:

国家自然科学基金项目(61433001,U1709215,61573275,61573076,U1509203);浙江省科学技术厅公益技术应用研究项目;铁路轨道不平顺故障在线检测系统的研究与开发(2016C31071);浙江省大学生科技创新活动计划项目(2017R407064).


Fault feature reduction based on belief interval
Author:
Affiliation:

(1. College of Automation,Hangzhou Dianzi University,Hangzhou310018,China;2. College of Electronic and Information Engineering,Xián Jiaotong University,Xián710049,China;3. College of Information Science and Engineering,Chongqing Jiaotong University,Chongqing400074,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多源信息融合故障诊断方法可以有效提高设备故障的确诊率,但同时需要使用由不同传感器获取的多种故障特征数据.此时若将所有特征的数据用于诊断,则计算量过大,诊断的实时性差.对此,将证据理论与粗糙集相结合,提出基于信度区间的属性约简定理及相应的故障特征(属性)约简方法,力图利用约简后的重要特征进行快速诊断.利用随机模糊变量和K均值对特征数据进行离散化处理,通过压缩二进制矩阵获取核属性,再将属性的信度区间大小作为迭代约简过程中属性的选取标准,向核属性中添加重要属性,最终获得属性约简结果.最后进行电机转子的特征融合诊断实验,通过与经典的粗糙集简约方法对比验证所提出方法的有效性.

    Abstract:

    Fault diagnosis based on multi-source information fusion can improve equipment diagnosis rate. However, such methods need to obtain a variety of fault feature data obtained from different sensors. If the data of all features are used for diagnosis, then computation burden will be too large to realize real-time diagnosis. Based on evidence theory and rough sets, a belief interval-based attribute reduction theorem and the corresponding fault feature(attribute) reduction method are presented so as to use the reduced important features to make fast diagnosis decision. In detail, the random fuzzy variable and K-means are used to discretize the data of features. The core attribute set can be achieved by compressed binary matrix. Thus, the belief interval size of attribute is taken as the criterion of attribute selection in the iterative reduction process in which the important attributes are added to the core. Finally, the reduction result is obtained. In the experiment of features fusion diagnosis of motor rotor, the effectiveness of the proposed method is illustrated by comparing with the classical rough set reduction methods.

    参考文献
    相似文献
    引证文献
引用本文

徐晓滨,张明,文成林,等.基于信度区间的故障特征约简方法[J].控制与决策,2019,34(4):767-774

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-03-21
  • 出版日期:
文章二维码