基于梯形模糊中智数的最短路径求解方法
CSTR:
作者:
作者单位:

(1. 福州大学经济与管理学院,福州350116;2. 福建江夏学院电子信息科学学院,福州350108;3. 福州大学信息管理研究所,福州350116;4. 福州大学信息化建设办公室,福州350116;5. 哈桑二世大学信息处理实验室,卡萨布兰卡20000)

作者简介:

谭睿璞(1982-), 女, 副教授, 博士生, 从事模糊信息处理的研究;张文德(1962-), 男, 教授, 博士生导师, 从事信息管理与信息系统等研究.

通讯作者:

E-mail: zhangwd@fzu.edu.cn.

中图分类号:

C931

基金项目:

福建省社会科学规划项目(FJ2016C028);福建省中青年教师教育科研项目(JAT160556);国家社会科学基金项目(17CGL058);福州大学课题(BPZD1601).


Solving methods for the shortest path problem based on trapezoidal fuzzy neutrosophic numbers
Author:
Affiliation:

(1. School of Economics and Management,Fuzhou University,Fuzhou350116,China;2. College of Electronics and Information Science,Fujian Jiangxia University,Fuzhou350108,China;3. Institute of Information Management,Fuzhou University,Fuzhou350116,China;4. Information Construction Office,Fuzhou University,Fuzhou350116,China;5. Laboratory of Information Processing,University Hassan II,Casablanca20000,Morocco)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    最短路径的选择是图论中的经典问题之一.复杂环境中对象之间的关系通常具有模糊性、犹豫性、不确定性和不一致性,而中智集是元素的真实程度、不确定程度及谬误程度的集合,更有能力捕捉不完全信息.基于此,基于中智集理论和图理论的中智图最短路径选择成为一个关键问题.针对边长表述为梯形模糊中智数的中智图最短路径求解问题,提出一种扩展的动态规划求解方法.利用基于梯形模糊中智数的得分函数和精确函数来比较路径长度,并给出扩展的动态规划求解最短路径方法,从而得到最短路径和最短路径长度.最后,通过两个算例验证此方法的可行性,通过与Dijkstra算法对比分析说明所提出方法的合理性和有效性,并且分析了采用不同排序方法对中智图最短路径选择的影响.

    Abstract:

    The selection of the shortest path problem is one of the classic problems in the graph theory. The relationship between objects in a complex environment usually has fuzziness, hesitancy, uncertainty and inconsistency. A neutrosophic set is characterized by the degree of truth-membership, indeterminacy-membership and falsity-membership, and is more capable of capturing incomplete information. The selection of the shortest path of the neutrosophic graph based on the theory of neutrosophic set and graph theory has become a key issue. For the shortest path problem in the neutrosophic graph, in which the edge length is assigned a trapezoidal fuzzy neutrosophic number instead of a real number, a solving method based on the extended dynamic programming is proposed. The path length is compared using the score function and the accuracy function based on the trapezoidal fuzzy neutrosophic numbers. An extended dynamic programming method for solving the shortest path problem is presented to obtain the shortest path and the shortest path length. Finally, two examples are used to verify the feasibility of this method, and the comparison and analysis with the Dijkstra algorithm illustrate the rationality and effectiveness of this method. And the impact of using different sorting methods on the selection of the shortest path of the neutrosophic graph is analyzed.

    参考文献
    相似文献
    引证文献
引用本文

谭睿璞,张文德,Said Broumi.基于梯形模糊中智数的最短路径求解方法[J].控制与决策,2019,34(4):851-860

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-03-21
  • 出版日期:
文章二维码