基于多维信息特征映射模型的在线学习路径优化方法
CSTR:
作者:
作者单位:

(1. 浙江工业大学教育科学与技术学院,杭州310023;2. 浙江工业大学计算机科学与技术学院,杭州310023)

作者简介:

李浩君(1977-), 男, 副教授, 博士, 从事智能计算、智能学习等研究;王万良(1957-), 男, 教授, 博士生导师, 从事计算机智能自动化等研究.

通讯作者:

E-mail: zgdlhj@zjut.edu.cn.

中图分类号:

TP18

基金项目:


Method of online learning path optimization based on multi-dimensional information feature mapping model
Author:
Affiliation:

(1. College of Education Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China;2. College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前在线学习路径优化方法存在学习路径与学习者匹配度不高的问题,首先构建在线学习路径的多维信息特征映射模型(MIFMM),该模型根据学习者与学习资源的多维信息特征建立,融合了kolb学习风格和学习资源类型信息;然后设计双映射二进制粒子群优化算法(DMBPSO),DMBPSO算法根据进化因子ef将学习路径推荐过程分为收敛和跳出局部最优两种进化状态,采用与进化状态特征相匹配的映射函数选择策略,并对惯性权重进行动态非线性调整,提高学习路径推荐性能;接着将MIFMM模型与DMBPSO算法相融合提出基于多维信息特征映射模型的在线学习路径优化方法(MIFMM-POA);最后将MIFMM-POA方法与其他4种粒子群算法为核心的学习路径优化方法相比较,从寻优精度、寻优过程与寻优时间3个角度进行分析,实验表明MIFMM-POA方法是优化学习路径的有效方法.

    Abstract:

    For the problem that online learning path optimization methods don't have a high degree of matching between learning path and learners, this paper firstly constructs a multi-dimensional information feature mapping model(MIFMM) of online learning path, which is based on the multi-dimensional information characteristics of learners and learning resources, and integrates kolb learning style and learning resource type information. Then, a dual mapping binary particle swarm optimization(DMBPSO) algorithm is designed. According to the evolution factor ef, the DMBPSO algorithm divides the learning path recommendation process into two evolutionary states: convergent and out of local optimism, adopts a mapping function selection strategy which matches the evolutionary state features, and dynamically adjusts the inertia weight to improve the learning path recommendation performance. Futhermore, this paper combines the MIFMM with the DMBPSO algorithm to propose an online learning path optimization method based on the MIFMM model (MIFMM-POA). Finally, the MIFMM-POA method is compared with the learning path optimization methods based on the other four particle swarm algorithms, and the analysis is carried out from the three perspectives of optimization accuracy, optimization process and optimization time. The experimental results show that the MIFMM-POA method is an effective method to optimize the learning path.

    参考文献
    相似文献
    引证文献
引用本文

李浩君,张鹏威,张征,等.基于多维信息特征映射模型的在线学习路径优化方法[J].控制与决策,2019,34(6):1132-1140

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-05-09
  • 出版日期:
文章二维码