引用本文:谭永宏,曾喆昭.基于弹性能量函数的非线性不确定系统控制方法[J].控制与决策,2019,34(6):1247-1252
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】 附件
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 52次   下载 67 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于弹性能量函数的非线性不确定系统控制方法
谭永宏1, 曾喆昭2
(1. 湖南科技学院电子与信息工程学院,湖南永州425199;2. 长沙理工大学电气与信息工程学院,长沙410076)
摘要:
针对非线性不确定系统的控制问题,提出一种基于弹性能量函数的扰动观测方法和弹性跟踪控制方法.该方法以弹性能量函数为核心,将其分别应用于扰动观测器、虚拟跟踪指令以及弹性跟踪控制器的设计.该控制方法的突出优势是只根据误差来消除误差,不涉及误差的微分运算,控制器增益参数完全根据积分步长来整定.理论研究表明,所提出的弹性跟踪控制方法不仅可从理论上保证各级子控制器的稳定性,有效解决高阶SISO非线性不确定系统的控制问题,而且可有效避免反步控制方法出现的微分爆炸问题.此外,每个子控制器只有一个由积分步长即可整定的增益参数,因而控制器结构简单、计算量较小.仿真结果表明:所提出的控制方法不仅具有快的响应速度、高的控制精度以及强的抗扰动能力,而且不依赖于被控对象模型,在非线性不确定系统控制领域具有广泛的应用前景.
关键词:  弹性跟踪控制  弹性能量函数  扰动观测器  非线性不确定系统  鲁棒稳定性  免参数整定
DOI:10.13195/j.kzyjc.2017.1545
分类号:TP13
基金项目:湖南省自然科学基金项目(2015JJ6043);永州市指导性科技计划项目(永科发[2016]27号:7);湖南科技学院重点学科建设项目.
Nonlinear uncertain system control method based on elastic energy function
TAN Yong-hong1,ZENG Zhe-zhao2
(1. School of Electronics and Information Engineering, Hu'nan University of Science and Engineering,Yongzhou 425199,China;2. College of Electric and Information Engineering,Changsha University of Science and Technology,Changsha410076, China)
Abstract:
For the control problem of a nonlinear uncertain system, a disturbance observation method and an elastic tracking control method are proposed based on the elastic energy function. The elastic energy function is applied to design the disturbance observer, virtual tracking instruction and elastic tracking controller, respectively, as the core technology. The prominent advantage of the proposed control method is only according to the error to eliminate the error, does not involve the differential operators of the error, and the controller gain parameters are determined completely by the integral step. Theory research show that the proposed elastic tracking control method not only guarantees the stability of various sub-controller theoretically, and effectively solves the control problem of higher-order SISO nonlinear uncertain systems, but also effectively avoids the differential explosion problem of the back stepping control method. In addition, each sub-controller has only one gain parameter which can be tunned by the integral step, so the controller has simple structure and small calculation. Simulation results show that the proposed elastic tracking control method not only has fast response speed, high control precision and strong ability to resist disturbance, but also is not dependent on the controlled object model, therefore has wide application prospect in the field of nonlinear uncertain systems control.
Key words:  elastic tracking control  elastic energy function  disturbance observer  nonlinear uncertain system  robust stability  parameter-free tuning

用微信扫一扫

用微信扫一扫