基于LQR的耦合动态互联系统分布式协作 负载均衡优化控制
CSTR:
作者:
作者单位:

(1. 湖南工商大学数学与统计学院,长沙410205;2. 国防科技大学自动化系,长沙410073;3. 湖南工商大学大数据与互联网创新研究院,长沙410205)

作者简介:

通讯作者:

E-mail: denan2003@163.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(11601145);湖南省自然科学基金项目(2017JJ2130,2018JJ3264);湖南省教育厅科研项目(16B143,17A116);湖南省哲学社会科学基金项目(16YBA243);新零售虚拟现实技术湖南省重点实验室项目(2017TP1026);移动商务智能湖南省重点实验室项目(2015TP1002);湖南省教育厅科研项目(18A309).


LQR-based distributed cooperative load-sharing optimal control for coupled inter-connected dynamical systems
Author:
Affiliation:

(1. School of Mathematics and Statistics,Hunan University of Technology and Business,Changsha 410205,China;2. Department of Automation,National University of Defense Technology,Changsha 410073,China;3. Institute of Big Data and Internet Innovation,Hunan University of Technology and Business,Changsha 410205,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对一类非等同非线性耦合互联系统,提出分布式协作负载均衡优化控制方法.将子系统间的通信联系建模成有向图,借助输入输出反馈线性化技术,将耦合互联系统的分布式负载均衡控制设计问题转化为广义线性多智能体系统的同步跟踪问题;基于最近邻原则和LQR方法,设计增益可调的分布式协作负载均衡优化控制律,耦合强度依赖于通信拓扑,控制增益依赖于子系统模型;借助矩阵变换方法,整个闭环系统的渐近稳定性可以解耦成每个子系统的稳定性,在假定通信拓扑只含有生成树的条件下,借助李亚谱诺夫函数,可证明整个闭环系统是稳定的,且通过调节控制增益,可以得到期望的响应速度.仿真结果验证了所提出控制方法的有效性及可行性.

    Abstract:

    A distributed cooperative optimal load-sharing control is proposed for one class coupled parallel-connected dynamical systems with non-identical nonlinear dynamics. The communication among subsystems is modeled as a digraph. The input-output linearization technique is adopted to transform the load-sharing control design into a tracking synchronization problem of a general linear multi-agent system. LQR-based method is introduced to design the cooperative optimal load-sharing control law with tunable gains based on the nearest neighbor principle, which makes the coupling strength only depend on the communication topology and the control gain only depend on the sub-system model. The asymptotically stability of the entire closed-loop systems can be decoupled into each sub-system's stability through matrix transformation. Assuming that the directed graph has a spanning tree, the stability of the whole system can be proved with the aid of the Lyapunov function. A desired response speed can be obtained by tuning the control parameters with the proposed method. Simulation results verify the effectiveness and feasibility of the proposed approach.

    参考文献
    相似文献
    引证文献
引用本文

刘建刚,郑志强,谢小良,等.基于LQR的耦合动态互联系统分布式协作 负载均衡优化控制[J].控制与决策,2019,34(7):1487-1491

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-06-28
  • 出版日期:
文章二维码