高超声速飞行器惯导系统误差参数两次优化辨识方法
CSTR:
作者:
作者单位:

(火箭军工程大学作战保障学院,西安710025)

作者简介:

通讯作者:

E-mail: gwlttxs@163.com.

中图分类号:

V448.2

基金项目:


Quadratic optimization identification research on error parameters of SINS for hypersonic vehicle
Author:
Affiliation:

(College of War Support,Rocket Force University of Engineering,Xián710025,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为满足高超声速飞行器高精度和高可靠性的导航要求,提出一种在发射惯性系下利用智能优化算法实现捷联惯性系统误差参数两次优化辨识的方法.建立惯性测量单元(IMU)误差补偿模型和完整的非线性捷联惯性系统导航模型,为数值优化计算提供准确的模型基础.基于SINS/GPS/CNS组合导航系统信息,建立陀螺仪误差优化模型和加速度计误差优化模型,采用两次优化策略分步估计捷联惯性系统误差参数:首先利用粒子群算法对陀螺仪误差参数进行优化辨识和补偿;然后利用粒子群算法对加速度计误差参数进行优化辨识.仿真结果表明,基于组合导航系统信息和非线性优化模型,两次优化辨识方法能够在线辨识出高精度的捷联惯性系统误差参数,陀螺仪和加速度计优化参数值的相对误差均在20%以内,从而有效提高了高超声速飞行器导航精度.

    Abstract:

    In order to meet the navigation requirements of high-accurate and high-reliable for hypersonic vehicles, a quadratic intelligent optimization method which can identify error parameters of strap-down inertial navigation system(SINS) in launch inertial coordinate system is proposed. The error compensating model and the complete nonlinear navigation model of the SINS are established, which can provide accurate model basis for optimization calculation. Based on information of the SINS/GPS/CNS integrated navigation system, the optimization model of gyro errors and the optimization model of accelerometer errors are built, and the quadratic intelligent strategy is adopted to estimate error parameters of the SINS. Firstly, error parameters of gyro are identified and compensated by using the particle swarm algorithm. On this basis, the error parameters of accelerometer are identified by using the particle swarm algorithm. The simulation results show that the quadratic optimization identification method can high-accurate identify the error parameters of the SINS online based on information of the integrated navigation system and the nonlinear optimization model, and the relative errors of optimization parameters of gyro and accelerometer are within 20%, and the navigation precision of the hypersonic vehicle is improved significantly.

    参考文献
    相似文献
    引证文献
引用本文

郭玮林,鲜勇,张大巧,等.高超声速飞行器惯导系统误差参数两次优化辨识方法[J].控制与决策,2020,35(1):25-34

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-12-27
  • 出版日期:
文章二维码