自适应线性预测卡尔曼滤波压缩感知算法
CSTR:
作者:
作者单位:

(1. 上海大学通信与信息工程学院,上海200444;2. 上海大学特种光纤与光接入网省部共建重点实验室,上海200072)

作者简介:

通讯作者:

E-mail: adaline@163.com.

中图分类号:

TP391

基金项目:

国家自然科学基金项目(61871261, 61571282).


Adaptive linear predictive Kalman filter compressed sensing algorithm
Author:
Affiliation:

(1. School of Communication and Information Engineering, Shanghai University,Shanghai 200444,China;2. Key Laboratory of Specialty Fiber Optics and Optical Access Networks,Shanghai University,Shanghai 200072,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对压缩感知中时变稀疏信号的重建问题,提出一种基于自适应线性预测的卡尔曼滤波恢复算法.该算法采用滑动窗口对信号进行观测,基于前后窗信号之间的相关性并利用自适应线性预测方法,建立前后窗口信号的状态转移方程,与修正后的观测方程共同构成系统状态空间模型.在信号重构时,采用贪婪算法确定信号支撑集、降阶卡尔曼滤波算法迭代得到其精确解.对调频信号、调幅信号、WiFi射频信号和语音采样信号进行仿真实验验证,仿真结果表明,所提出算法在不显著增加计算复杂度的情况下,重建精度比改进前的循环平移模型算法提高约5%,且远高于其他同类算法;同时在不同的噪声环境下,重建后的信号比原信号信噪比提高$1\sim 8$dB,表明算法具有较强的抗噪声性能.

    Abstract:

    A Kalman filter algorithm based on adaptive linear predictive is proposed for the reconstruction of time-varying sparse signals in compressed sensing. The signal is observed from a sliding window. Based on the correlations between the signals of two continuous windows and the adaptive linear prediction, the state transfer equation of continuous windows signal is obtained. The equation and the modified observation equation constitute the system state-space model. In the signal reconstruction stage, a greedy algorithm is employed to determine the support set and reduced order Kalman filter iteration to get the exact solution. This paper simulates the FM, AM, WiFi RF and voice sampling signals. The simulation results show that the proposed algorithm recovering performance is improved without much increase in complexity. The reconstruction accuracy is improved about 5 percent as compared with that using the cycle spinning model, and far higher than other similar algorithms. Meanwhile, the SNR of reconstructed signal is about $1\sim 8$dB higher than that of original signal in the different noise environment, which shows that the algorithm has strong anti noise performance.

    参考文献
    相似文献
    引证文献
引用本文

田金鹏,闵天,薛莹,等.自适应线性预测卡尔曼滤波压缩感知算法[J].控制与决策,2020,35(1):83-90

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2019-12-27
  • 出版日期:
文章二维码