引用本文:钟京洋,宋笔锋.基于鲁棒伺服思想的尾坐式飞行器悬停姿态控制[J].控制与决策,2020,35(2):339-348
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】 附件
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于鲁棒伺服思想的尾坐式飞行器悬停姿态控制
钟京洋,宋笔锋
(西北工业大学航空学院,西安710072)
摘要:
针对一款小型飞翼布局的尾坐式垂直起降飞行器,通过考虑舵面失效、风场干扰、气动参数不确定以及转动惯量不确定等因素的影响,进行悬停阶段的姿态控制研究.根据悬停状态点线性化的运动学和动力学模型,设计鲁棒伺服线性二次型调节器(RSLQR)控制器来保证标称系统良好的响应及鲁棒性.同时,考虑到较大不确定及扰动下RSLQR控制器性能下降的不足,希望飞行器能够尽量在平衡点附近较大的范围内工作,为此设计$L_1$自适应控制器进行补偿,以使系统性能得到恢复.考虑到控制器的时延裕度对系统稳定性有着重要影响,讨论控制器参数与系统时延裕度的关系.通过仿真验证不同不确定影响下系统良好的性能,并提出一种基于扩张状态观测器(ESO)的补偿方法,以使设计的控制系统在飞控硬件性能较为有限时,依然能够保证良好响应.最后,通过飞行测试对所提算法的有效性和可行性进行验证.
关键词:  鲁棒伺服  $L_1$自适应控制  尾坐式  时延裕度  姿态控制  悬停  扩张状态观测器
DOI:10.13195/j.kzyjc.2018.0926
分类号:TP273
基金项目:
Hover attitude control of a tail-sitter UAV based on robust servomechanism controller
ZHONG Jing-yang,SONG Bi-feng
(School of Aeronautics,Northwestern Polytechnical University,Xián710072,China)
Abstract:
This study investigates the design of a hover attitude controller of a flying-wing tail-sitter unmanned aerial vehicle(UAV) by taking into account the uncertain impacts such as actuator failure, wind field disturbance, aerodynamic uncertainty and the uncertainty of moment of inertia. Based on the linearized kinematic and dynamic model near the hovering point, a robust servomechanism linear quadratic regulator(RSLQR) controller is designed to ensure the good response and robustness of the nominal system. Meanwhile, considering the performance degradation of the controller in exist of large uncertainties and disturbances, the $L_1$ adaptive controller is designed to compensate for the uncertainties and disturbances so that the aircraft could operate near a large range of the equilibrium point. Considering that the time delay margin of controller is crucial to the stability of system, the relationships between the time delay margin and the controller parameter are discussed. Simulation results show the good performance in exist of different uncertainties and a method of compensation based on the extended state observer(ESO) is proposed to ensure good response when the control system is applied to a performance-limited hardware. Finally, a flight test is implemented to verify the validity and feasibility of the algorithm.
Key words:  robust servomechanism  $L_1$ adaptive control  tail sitter  time delay margin  attitude control  hover  extended state observer

用微信扫一扫

用微信扫一扫