基于演化聚类分析的组合预测改进熵权模型及其应用
CSTR:
作者:
作者单位:

(1. 安徽大学经济学院,合肥230601;2. 安徽大学数学科学学院,合肥230601;3. 安徽大学商学院, 合肥230601)

作者简介:

通讯作者:

E-mail: huayouc@126.com.

中图分类号:

O211.67;TP277

基金项目:

国家自然科学基金项目(71701001,71771001,71871001,61502003);安徽省哲学社会科学规划项目(AHSKQ2016D13);安徽大学博士科研启动基金项目.


A modified entropy weighting method in combination forecasting based on evolutionary clustering analysis and its application
Author:
Affiliation:

(1. School of Economics,Anhui University,Hefei230601,China;2. School of Mathematical Sciences,Anhui University,Hefei230601,China;3. School of Business,Anhui University,Hefei230601,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对组合预测传统熵值赋权方法可能存在大样本下权重差异不大的不足,引入演化聚类分析技术,提出一类组合预测改进的熵值赋权模型.在确定好单项预测方法和结果后,通过对所有单项预测结果给出的绝对误差信息进行聚类分析,得到单项预测方法下误差信息在不同类中的离散分布,给出单项预测结果在整体和局部两个层面的差异比较工具,进而利用得到的离散分布应用熵权模型给出改进的熵值赋权方法.结合美元兑日元的汇率数据分析表明了所提出方法的可行性和有效性.

    Abstract:

    In order to overcome lower difference among weights in combination forecasting with large sample determined by traditional entropy weighting methods, a modified entropy weighting method is developed by introducing the evolutionary automatic clustering analysis. When single forecasting approaches and predictions are fixed, all absolute errors are clustered and diverse discrete distributions of absolute errors corresponding to single forecasting approaches among clusters are obtained, which are tools for further comparisons among the single forecasting methods. Then, a modified entropy weighting method is given using the obtained discrete distributions. By using a numerical study with exchange rate between dollar and yen, the feasibility and effectiveness of the developed method are illustrated.

    参考文献
    相似文献
    引证文献
引用本文

陶志富,朱家明,刘金培,等.基于演化聚类分析的组合预测改进熵权模型及其应用[J].控制与决策,2020,35(2):410-416

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-01-18
  • 出版日期:
文章二维码