智能制造系统基于数据驱动的车间实时调度
CSTR:
作者:
作者单位:

(北京科技大学机械工程学院,北京100083)

作者简介:

通讯作者:

E-mail: wuxiuli@ustb.edu.cn.

中图分类号:

TP18

基金项目:

国家自然科学基金项目(51305024).


Data-based real-time scheduling in smart manufacturing
Author:
Affiliation:

(School of Mechanic Engineering,University of Science and Technology Beijing,Beijing100083,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    智能制造系统采用大量先进的信息技术,为车间实时调度提供技术基础.各类信息技术在生产制造过程中的广泛应用使得制造系统积累了大量与生产调度相关的数据,因此,通过利用历史生产调度数据和智能装备收集到的实时生产数据,建立基于数据驱动的生产实时调度方法成为新型制造环境下实现高效调度的新思路.针对智能制造环境下的混合流水车间实时调度问题,提出基于BP神经网络的数据驱动的实时调度方法,从历史近优的调度方案中提取用于调度知识挖掘的样本数据,通过BP神经网络训练学习获取生产系统状态与调度规则的映射关系网络,并将其应用于生产在线实时调度.数值实验表明,所提出的方法优于固定单一调度规则,在不同的调度性能指标下其效果均稳定且良好.

    Abstract:

    The smart manufacturing system employs a large number of advanced information technologies, which makes it possible to collect real-time data in production systems. The wide application of various types of information technology in the manufacturing process has enabled the manufacturing system to accumulate a large amount of data relating to production scheduling. Therefore, the historical production scheduling data and the real-time production data collected by smart equipments are used to establish a data-driven production scheduling method. Focusing on real-time hybrid flow shop scheduling problems, a real-time data-driven scheduling method based on the BP neural network is proposed. Firstly, the sample data for scheduling knowledge mining is extracted from the historical optimal and near-optimal scheduling scenarios. Through the BP neural network, the mapping relationship network between the production system state and the dispatching rules is obtained, which is then applied to production online real-time scheduling. Finally, numerical experiments verify that the proposed method outperforms the fixed single dispatching rule, and is stable under different scheduling objectives.

    参考文献
    相似文献
    引证文献
引用本文

吴秀丽,孙琳.智能制造系统基于数据驱动的车间实时调度[J].控制与决策,2020,35(3):523-535

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-02-22
  • 出版日期:
文章二维码