基于群智能求解带约束问题的时域鲁棒优化算法
CSTR:
作者:
作者单位:

(1. 东华大学信息科学与技术学院,上海201620;2. 嘉兴职业技术学院机电与汽车分学院,浙江嘉兴314036;3. 英国萨里大学计算机科学系,吉尔福德GU27XH)

作者简介:

通讯作者:

E-mail: yaochu.jin@surrey.ac.uk.

中图分类号:

TP18

基金项目:

国家自然科学基金项目(61806051,61503075,61603090);英国自然和工程科学研究会基金项目(EP/M017869/1);上海市科学技术委员会国际合作项目(16510711100);浙江省自然科学基金项目(LY18F030010);中央高校基本科研业务费专项资金项目(2232015D3-32,2232016D-32);上海市扬帆计划项目(17YF1426100).


Robust optimization over time for constrained optimization based on swarm intelligence
Author:
Affiliation:

(1. College of Information Science and Technology,Donghua University,Shanghai 201620,China;2. Mechanical and Automotive Branches,Jiaxing Vocational and Technology College,Jiaxing 314036,China;3. Department of Computer Science,University of Surrey,Guildford GU27XH,United Kingdom)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对现有的时域鲁棒优化算法无法解决带约束的优化问题,基于群智能优化方法,提出一种求解带约束优化问题的时域鲁棒优化算法.首先,用约束条件构造罚函数,将带约束优化问题处理成为无约束优化问题;然后,采用一个分段函数作为粒子的适应度评价函数,通过竞争规则筛选粒子,设计带约束问题的时域鲁棒优化算法.以优化碳纤维原丝的性能为背景,将算法在多组参数下进行测试和对比分析,结果表明了所提出算法的有效性.进一步分析AR模型对算法性能的影响,指出预测模型的改进是提升算法性能的一个重要手段.

    Abstract:

    As constrained optimization problem can not be solved by existing robust optimization over time , this paper proposes a new algorithm for robust optimization over time for solving constrained optimization problems based on swarm intelligence. Firstly, a penalty function with constraints is constructed and the constrained optimization problems are processed into the unconstrained optimization problems. Then, the algorithm of robust optimization over time for constrained is designed, which the piecewise function is used as the fitness evaluation function of the particle, and the particle is selected by the competition rule. Finally, The proposed algorithm is evaluated and compared under different parameter settings for optimization of the performance of a carbon fiber precursor to demonstrate its effectiveness. Furthermore, the influence of AR model on the performance of the algorithm is analyzed. It is pointed out that the improvement of the prediction model is an important way to improve the performance of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

黄元君,金耀初,郝矿荣.基于群智能求解带约束问题的时域鲁棒优化算法[J].控制与决策,2020,35(3):740-748

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-02-22
  • 出版日期:
文章二维码