引用本文:刘长石,周鲜成,盛虎宜,等.生鲜电商配送的TDVRPTW研究: 基于经济成本与环境成本兼顾的视角[J].控制与决策,2020,35(5):1273-1280
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】 附件
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览次   下载 本文二维码信息
码上扫一扫!
分享到: 微信 更多
生鲜电商配送的TDVRPTW研究: 基于经济成本与环境成本兼顾的视角
刘长石1,2, 周鲜成2, 盛虎宜3, 罗亮2
(1. 湖南工商大学工商管理学院,长沙410205;2. 湖南工商大学移动商务智能湖南省重点实验室,长沙410205;3. 电子科技大学经济与管理学院,成都611731)
摘要:
基于经济成本与环境成本兼顾的视角,研究时变网络下生鲜电商配送的带时间窗车辆路径问题(TDVRPTW),综合考虑车辆时变行驶速度、车辆油耗、碳排放、生鲜农产品的易腐易损性、客户时间窗与最低新鲜度限制等因素,设计跨时间段的路段行驶时间计算方法,引入农产品新鲜度度量函数与碳排放率度量函数.在此基础上,以经济成本与环境成本之和最小为目标构建具有最低新鲜度限制的TDVRPTW数学模型,并根据模型特点设计一种自适应改进蚁群算法求解.最后采用案例验证所提出方法能有效规避交通拥堵时间段、降低总配送成本、促进物流配送领域的节能减排.
关键词:  时变网络  生鲜电商  新鲜度  碳排放  车辆路径问题  改进蚁群算法
DOI:10.13195/j.kzyjc.2018.1582
分类号:C93
基金项目:国家社科基金一般项目(17BJL091).
TDVRPTW of fresh e-commerce distribution: Considering both economic cost and environmental cost
LIU Chang-shi1,2,ZHOU Xian-cheng2,SHENG Hu-yi3,LUO Liang2
(1. School of Management,Hu'nan University of Business and Technology,Changsha410205,China;2. Key Laboratory of Hu'nan Province for Mobile Business Intelligence,Hu'nan University of Business and Technology,Changsha410205,China;3. School of Economics and Management,University of Electronic Science and Technology of China,Chengdu 611731,China)
Abstract:
The time-dependent vehicle routing problem with time windows (TDVRPTW) of fresh e-commerce distribution is studied by considering both economic cost and environmental cost. A calculation method for road travel time across time periods is designed. A freshness measure function of agricultural products and a measure function of carbon emission rate are employed by considering time-varying vehicle speeds, fuel consumptions, carbon emissions, perishable agricultural products, customers'time windows and minimum freshness. A TDVRPTW model is formulated with minimum freshness constraint. The object of the TDVRPTW model is to minimize the sum of economic cost and environmental cost. According to the characteristics of the model, an adaptive improved ant colony algorithm is designed. Finally, the experimental data show that the proposed approaches effectively avoid traffic congestions, reduce total distribution costs, and promote energy conservation and emission reduction.
Key words:  time-varying network  fresh e-commerce  freshness  carbon emission  vehicle routing problem  improved ant colony algorithm

用微信扫一扫

用微信扫一扫