基于即时交货的离散时间模型及其在炼油过程调度优化中的应用
CSTR:
作者:
作者单位:

(清华大学自动化系,北京100084)

作者简介:

通讯作者:

E-mail: huangdx@tsinghua.edu.cn.

中图分类号:

TP278

基金项目:

国家自然科学基金项目(61673236,61273039,61873328).


Instant delivery based discrete-time model and its application in refinery process scheduling optimization
Author:
Affiliation:

(Department of Automation,Tsinghua University,Beijing100084,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对炼油过程调度优化的离散时间与连续时间建模方法在应用中的局限性,提出一种基于即时交货的离散时间建模方法.该方法总体上采用离散时间表示,通过对成品油交货环节相关部分更加细致的描述,使得交货活动能够在时间片段内部发生,既可保证对实际问题的准确刻画,又能实现对模型规模的有效控制.以华北地区某炼油厂的改质及调合过程为例,分别建立离散时间模型、连续时间模型以及所提出的基于即时交货的离散时间模型,并结合对3个案例的求解,从不同的角度对3种模型进行对比研究.研究结果表明,所提出的模型兼具原离散时间模型和连续时间模型的优势,能够在不同的情形下保持稳定且优良的性能.

    Abstract:

    Discrete-time and continuous-time modeling methods for refining process scheduling have limitations in application. In view of this, this paper proposes an instant delivery based discrete-time modeling method. This method generally adopts discrete time representation. Through more detailed description of the relevant parts of the product delivery, the delivery activities can occur within the time interval, which not only ensures accurate description of actual problems, but also achieves effective control of the model scale. Taking the modification and blending process of a refinery in North China as an example, a discrete-time model, a continuous-time model, and an instant delivery based discrete-time model are established, respectively. According to the solution to the three cases, the three models are compared from different perspectives. The research results show that the model proposed in this paper has both the advantages of the original discrete-time model and continuous-time model, and can maintain stable and good performance in different situations.

    参考文献
    相似文献
    引证文献
引用本文

韩彪,江永亨,王凌,等.基于即时交货的离散时间模型及其在炼油过程调度优化中的应用[J].控制与决策,2020,35(6):1361-1368

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2020-05-15
  • 出版日期:
文章二维码