基于混合差分遗传算法的Bouc-Wen迟滞模型辨识策略
CSTR:
作者:
作者单位:

(武汉工程大学 电气信息学院,武汉 430205)

作者简介:

通讯作者:

E-mail: zcli@wit.edu.cn.

中图分类号:

TP27

基金项目:

国家自然科学基金项目(41727801).


Bouc-Wen hysteresis model identification strategy based on hybrid differential genetic algorithm
Author:
Affiliation:

(School of Electrical and Information Engineering,Wuhan Institute of Technology,Wuhan430205,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种应用于Bouc-Wen迟滞模型的混合差分遗传算法.该算法可以自适应调节缩放因子来改变交叉概率因子的值,同样也可以自动调节交叉概率因子来调整缩放因子的值.通过缩放因子和交叉概率因子的混合作用,能使算法前期维持种群多样性,同时强化对全局最优值的搜索能力,从而快速寻找最适模型参数.在算法后期,随着局部最优值搜索能力的提高,会进一步提高最优模型参数的精度.与传统的自适应差分遗传算法在Bouc-Wen迟滞模型上的应用进行对比,仿真结果表明所提出的混合差分遗传算法不仅收敛速度更快而且计算精度更高.

    Abstract:

    A hybrid differential genetic algorithm for the Bouc-Wen hysteresis model is presented. The algorithm can adaptively adjust the scaling factor to change the value of the crossover probability factor. Similarly, it is can also automatically adjust the crossover probability factor to change the value of the scaling factor. Through the combination of the scaling factor and the cross factor, it can keep the individuals diversity and improve the searching ability of global optimum in the population at initial generations, as to quickly find the optimal model parameters. Moreover, the search ability of local optimal values can be improved, and the accuracy of the optimal model parameters can be further improved at a later time. The tranditional adaptive differential evolution algorithm is applied to the same Bouc-Wen hysteresis model. The simulation results show that the proposed algorithm not only has faster convergence speed but also has higher computational accuracy.

    参考文献
    相似文献
    引证文献
引用本文

李自成,张赛,王后能,等.基于混合差分遗传算法的Bouc-Wen迟滞模型辨识策略[J].控制与决策,2021,36(2):371-378

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-21
  • 出版日期: 2021-02-20
文章二维码