测量数据丢失的随机不确定系统滚动时域估计
CSTR:
作者:
作者单位:

(1. 海军航空大学 岸防兵学院,山东 烟台 264001;2. 中国人民解放军92095部队,浙江 台州 318000)

作者简介:

通讯作者:

E-mail: 15165714808@163.com.

中图分类号:

TP271.7

基金项目:

国家自然科学基金项目(61473306,61701519,61930074).


Moving horizon estimation for stochastic uncertain system with missing measurements
Author:
Affiliation:

(1. Coastal Defence Academy,Naval Aviation University,Yantai 264001,China;2. The Chinese People's Liberation Army 92095 Troop,Taizhou 318000,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究存在传感器测量数据丢失的随机不确定系统状态估计问题,用概率已知的Bernoulli随机序列描述丢包现象,并采用丢失测量数据的预测值进行丢包补偿,将不确定条件下的最优化问题表示为Min-Max问题,并通过引入拉格朗日算子,将Min-Max问题转化为受限条件下的Min-Min问题,进而实现最优状态估计的求解.对所提算法的稳定性进行研究,推导出估计误差范数平方期望的上界,并给出估计误差范数平方期望收敛的充分条件.最后通过仿真验证所提算法的有效性.

    Abstract:

    The state estimation problem of stochastic uncertain systems with missing measurements is studied. A group of Bernoulli distributed random variables is employed to describe the phenomenon of packet dropouts, and the predictor of lost observation is used as the observation when a packet is lost. The optimization problem under uncertain conditions is described as a Min-Max problem, by using two groups of Lagrange multipliers, the Min-Max problem is transformed into a constrained Min-Min problem, and then the optimal estimator is obtained. The stability of the proposed algorithm is studied, the upper bound of the expectation of the square norm of estimation error is obtained, and a sufficient condition for the convergence of the square norm of estimation error is given. Finally, an example is given to demonstrate the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

刘帅,赵国荣,曾宾,等.测量数据丢失的随机不确定系统滚动时域估计[J].控制与决策,2021,36(2):450-456

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-01-21
  • 出版日期: 2021-02-20
文章二维码