基于波段影像统计信息量加权K-means聚类的高光谱影像分类
CSTR:
作者:
作者单位:

(1. 辽宁工程技术大学测绘与地理科学学院,辽宁阜新123000;2. 葫芦岛宏跃集团有限公司, 辽宁葫芦岛125200)

作者简介:

通讯作者:

E-mail: lntuliyu@163.com.

中图分类号:

TP751

基金项目:

国家自然科学基金青年科学基金项目(41301479);辽宁省高校创新人才支持计划项目(LR2016061);辽宁省教育厅科学技术研究一般项目(LJCL009).


Algorithm based on band statistical information weighted K-means for hyperspectral image classification
Author:
Affiliation:

(1. School of Geomatics,Liaoning Technical University,Fuxin123000,China;2. Huludao Hongyue Group CO., Ltd., Huludao125200,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对分类过程中如何合理利用高光谱影像波段问题,提出一种基于波段影像统计量加权K-means聚类的高光谱影像分类算法.该算法的核心思想在于:由波段含有的信息量及波段间的相关性确定各波段权重,同时考虑各波段对各聚类的重要性.首先,根据波段影像的熵、标准差及均值定义波段信息量函数,根据相邻波段影像互信息定义相关性函数;其次,由上述波段信息量函数及波段间相关性函数定义波段权重函数;然后,结合波段权重和波段-类属权重定义规则化目标函数;最后,依据参数特性设计目标函数求解方案.对Salinas高光谱影像和Pavia Centre高光谱影像分别采用所提出的算法与传统K-means算法、PCA$+K$-means算法及子空间波段选择$+K$-means算法进行对比实验,对于总精度及Kappa系数,所提出的算法都高于其他3种对比算法,结果验证了所提出算法的有效性.相对于其他3种算法而言,所提出的算法可有效改善高光谱影像分类的性能.

    Abstract:

    Aiming at the problem of how to use band information reasonably in the hyperspectral image classification, this paper proposes a hyperspectral image classification algorithm based on band statistical information weighted K-means clustering. The algorithm considers not only the quantity of information contained in each band and the correlation between bands but also the importance of each band to different clusters. The band weight is determined by the statistics of information and correlation functions. The statistics of information function is defined according to the entropy, standard deviation and mean value of the band image. The correlation function is defined according to the mutual information of adjacent band images. In order to express the importance of each band to different clusters, the band-category weight is introduced, and its entropy information measurement is defined. The above two types of weights are embedded into the K-means objective function. The final classification result can be obtained by minimizing the objective function. Classification experiments are conducted on Salinas and Pavia Centre hyperspectral images using the proposed algorithm, the traditional K-means algorithm, the PCA + K-means algorithm and the subspace band selection + K-means algorithm, respectively. The results demonstrate that the proposed algorithm is higher than the other three algorithms on overall accuracy and Kappa. It shows that the proposed algorithm can effectively improve the performance of hyperspectral image classification.

    参考文献
    相似文献
    引证文献
引用本文

李玉,甄畅,石雪,等.基于波段影像统计信息量加权K-means聚类的高光谱影像分类[J].控制与决策,2021,36(5):1119-1126

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-04-08
  • 出版日期: 2021-05-20
文章二维码