基于双边分解与$L_1$暗通道的战场图像增强算法
CSTR:
作者:
作者单位:

(南京理工大学机械工程学院,南京210094)

作者简介:

通讯作者:

E-mail: gxiaohui@njust.edu.cn.

中图分类号:

TP301.4

基金项目:

国家科技重大专项基金项目(004040204).


A battlefield image enhancement algorithm based on bilateral decomposition and $L_1$ dark channel prior
Author:
Affiliation:

(School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing210094,China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对战场图像雾霾导致图像目标不清晰,影响目标识别及指挥决断的问题,提出一种结合双边分解与$L_1$暗通道的战场图像增强算法,利用双边滤波将图像分解为低频基础含雾图像及高频纹理含噪图像.对于低频图像,分割天空区域优化大气光计算,之后根据上下文约束构建$L_1$正则化方程精确求解透射率来改进暗通道先验模型进行去雾处理;对于高频图像,利用导向滤波进行噪声抑制与细节增强,将图像融合并进行双伽马校正得到最终图像,实现图像去雾与去噪的解耦合.将所提出的算法与现有的算法处理效果进行对比,应用于战场环境下图像的去雾,并运用客观评价因子进行分析,实验结果表明,所提出的算法可以有效去除战场图像雾霾,抑制噪声并增强视觉效果,且在客观评价因子方面优于现有算法.

    Abstract:

    In the battlefield, fog and haze lead to image degradationand, which affects the target recognition and command decision. Therefore a battlefield image defogging algorithm, which combines bilateral decomposition and $L_1$ dark channel, is proposed. The bilateral filterer is used to decomposed the original image into low frequency component with fog information and high frequency component with noise image. For low frequency image, the sky area is split to obtain the global atmospheric light, and $L_1$ regularization is built according to the context constraint equation for accurate transmittance to improve the dark channel prior model for the fog. For high-frequency images, the guide filter is used to restrain noise and enhance detail, and then the final image is obtained by image fusion and bi-gamma function correction, so as to realize the decoupling of image fog removal and noise removal. The proposed algorithm is compared with the existing algorithms, and applied to the defogging of the image in the battlefield environment, which is analyzed using the objective evaluation factor. Experimental results show that the proposed algorithm can effectively remove haze, suppress noise, enhance visual effects and is better than the existing algorithms in objective evaluation factors.

    参考文献
    相似文献
    引证文献
引用本文

秦朝轩,顾晓辉.基于双边分解与$L_1$暗通道的战场图像增强算法[J].控制与决策,2021,36(5):1165-1172

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-04-08
  • 出版日期: 2021-05-20
文章二维码