基于R2指标和目标空间分解的高维多目标粒子群优化算法
CSTR:
作者:
作者单位:

1. 安徽工业大学 电气与信息工程学院,安徽 马鞍山 243032;2. 安徽省高校电力电子与运动控制重点实验室,安徽 马鞍山 243032

作者简介:

通讯作者:

E-mail: lanceleeneu@126.com.

中图分类号:

TP273

基金项目:

国家自然科学基金青年项目(61903003);安徽省自然科学基金青年项目(2008085QE227);安徽省高校自然科学重点研究项目(KJ2019A0051);安徽省高校电力电子与运动控制重点实验室开放课题(PEMC201903).


R2 indicator and objective space partition based many-objective particle swarm optimizer
Author:
Affiliation:

1. School of Electrical and Information Engineering,Anhui University of Technology,Maánshan 243032,China;2. Anhui Provincial Key Laboratory of Power Electronics and Motion Control,Maánshan 243032,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于R2指标和分解策略的多目标粒子群优化算法(R2-MOPSO)在求解2、3个目标优化问题时具有较好的收敛性和多样性,但在求解高维多目标优化问题时难度较大.对此,提出一种基于R2指标和目标空间分解的高维多目标粒子群优化算法(R2-MOPSO-II).首先借鉴R2指标和目标空间分解策略综合权衡选择过程的收敛性和多样性,设计双层档案维护策略;然后设计一种新的向导选择策略来连接目标空间和决策变量空间,进而提出一种基于双层档案的速度和位置更新策略以权衡粒子群优化算法的勘探和开采能力;最后通过引入高斯学习策略和精英学习策略防止粒子陷入局部最优前沿.数值仿真结果表明,所提出算法在求解DTLZ和WFG测试问题时具有较好的收敛性和多样性.

    Abstract:

    The R2 indicator and decomposition based multiple particle swarm optimizer(R2-MOPSO) is suitable for solving two and three objectives optimization problems in terms of the convergence and diversity. However, it is difficult for the R2-MOPSO to address many-objective optimization problems(MaOPs). Therefore, we propose an R2 indicator and objective space partition based many-objective particle swarm optimizer(R2-MOPSO-II) to solve MaOPs. Firstly, a new bi-level archive maintainence strategy is introduced to balance the convergence and diversity after considering the R2 indicator and the objective space partition strategy. Then, a new leader selection strategy gives the bridge between objective space and decision variable space. The modified velocity updated equation based on bi-level archive is introduced to balance the exploration and exploitation. Finally, the Gaussian learning strategy and the elitist learning strategy are embedded into the proposed algorithm to help the algorithm jump out of local Pareto front. The numerical simulation results show that the proposed algorithm has achieved better convergence and diversity for solving DTLZ and WFG test instances.

    参考文献
    相似文献
    引证文献
引用本文

李飞,吴紫恒,刘阚蓉,等.基于R2指标和目标空间分解的高维多目标粒子群优化算法[J].控制与决策,2021,36(9):2085-2094

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-09
  • 出版日期: 2021-09-20
文章二维码