一种基于池计算的宽度学习系统
CSTR:
作者:
作者单位:

1. 华东交通大学 电气与自动化工程学院,南昌 330013;2. 江西省先进控制与优化重点实验室,南昌 330013

作者简介:

通讯作者:

E-mail: bjdailz@163.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61663012,61673172,61733005).


A broad learning system based on reservoir computing
Author:
Affiliation:

1. School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,China;2. Key Laboratory of Advanced Control & Optimization of Jiangxi Province,Nanchang 330013,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    宽度学习系统(BLS)是一种基于RVFLN的高效增量学习系统,具有快速且精度高的特点.为了实现BLS对时间序列的精确预测,结合回声状态网络(ESN)的储备池结构,提出一种基于池计算的宽度学习系统(RCBLS).该系统通过在强化层引入简单环型储备池连接,以并行的储备池代替原系统中的前馈连接,使RCBLS具有一定的回声状态特性且方便设计.同时,应用增量学习保证了系统的实时性能.基于MSO时间序列预测问题,针对不同规模数据样本分别研究不同储备池结构RCBLS的性能.结果表明:多储备池结构的RCBLS大大提高了模型的泛化能力和稳定性.

    Abstract:

    Broad learning system(BLS), which has characteristics of fast and accuracy, is an efficient incremental learning systems based on random vector function-link network(RVFLN). In order to realize the precise prediction of time-series, a broad learning system based on reservoir computing reservoir computing broad learning systems(RCBLS) is proposed combined with the reservoir structure of echo state network(ESN). A simple circle reservoir connection is introduced in the RCBLS's enhancement layer to replace the feedforward connection of BLS, which makes the RCBLS have certain echo state characteristics and convenient for design. At the same time, incremental learning is applied to ensure RCBLS's real-time performance. Based on themultiple superimposed oscillator(MSO) time series prediction problems, the performance of the RCBLS with different reservoir structures under different scales of data sample is studied respectively. The results show that the RCBLS with multi-reservoir structure improves the generalization performance and stability greatly.

    参考文献
    相似文献
    引证文献
引用本文

杨刚,陈鹏,戴丽珍,等.一种基于池计算的宽度学习系统[J].控制与决策,2021,36(9):2203-2210

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-08-09
  • 出版日期: 2021-09-20
文章二维码