基于图像随机分布模型的电熔镁炉工况识别
CSTR:
作者:
作者单位:

东北大学 流程工业综合自动化国家重点实验室,沈阳 110004

作者简介:

通讯作者:

E-mail: lusw@mail.neu.edu.cn.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61833004,61991404);中国博士后科学基金项目(2020M670779).


Conditions recognition of fused magnesia furnace based on dynamic characteristics of B-spline network
Author:
Affiliation:

State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110004,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    电熔镁炉制备电熔镁砂的工艺过程中,会交替出现正常熔炼、加料和欠烧等多种不同工况,其中,欠烧工况分辨难度最大且最为关键.目前,欠烧工况的识别主要依靠人工经验完成,这种方式的准确性取决于人的经验水平和生理状态,且工人劳动强度大,存在容易漏检误检的问题.对此,依据不同工况下炉口火焰图像中具有的动态特征,提出一种基于B样条(B-spline)动态网络动态特性的工况识别技术.首先,建立炉口火焰的线性动态系统模型来刻画系统的动态特性;然后,设计基于子空间主要角度的核函数来度量火焰动态模型相似度.对比实验表明,所设计的基于B-spline动态网络动态特性的工况识别技术具有更好的分类精度和更高的效率.

    Abstract:

    In the process of preparing fused magnesia in fused magnesium furnace, different working conditions such as smelting condition, feeding condition and semi-fused condition alternately occur. Among them, semi-fused condition is the most difficult and critical to distinguish. At present, the identification of semi-fused conditions mainly depends on manual experience. The accuracy of this method depends on the experience level and physiological state of workers, in addition, the labor intensity of the workers is high and it is easy to miss detection and misdetect. Therefore, based on the dynamic characteristics of the furnace flame image under different working conditions, this paper proposes a working condition recognition technology based on the dynamic characteristics of the B-spline dynamic network. Firstly the linear dynamic system model of the furnace flame is established to describe the dynamic characteristics of the system. Then, the kernel function based on subspace principal angles is designed to measure the similarity of the flame dynamic models. The comparison experiment shows that the design of the working condition recognition technology based on the dynamic characteristics of the B-Spline dynamic network has the better classification accuracy and higher efficiency.

    参考文献
    相似文献
    引证文献
引用本文

蒋鹏,卢绍文,李明杰,等.基于图像随机分布模型的电熔镁炉工况识别[J].控制与决策,2021,36(11):2735-2742

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-09-26
  • 出版日期: 2021-11-20
文章二维码