基于指标和自适应边界选择的高维多目标优化算法
CSTR:
作者:
作者单位:

兰州理工大学 电气工程与信息工程学院,兰州 730050

作者简介:

通讯作者:

E-mail: lecstarr@163.com.

中图分类号:

TP273

基金项目:

国家自然科学基金项目(61763026,62063019).


An indicator-based many-objective evolutionary algorithm with adaptive boundary selection
Author:
Affiliation:

College of Electrical Engineering and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多目标优化算法的主要目标是实现好的多样性和收敛性.传统的高维多目标优化算法,当目标维数增加时,选择方式难以平衡种群的收敛性与多样性.对此,提出一个基于指标和自适应边界选择的高维多目标优化算法.在环境选择中,首先计算种群中两两个体的指标$I_\varepsilon(x,y)$作为第一选择标准;其次,提出一种自适应边界选择策略,利用种群进化信息对超平面系数进行模糊预测;再次,近似计算待选个体到超平面的范式距离作为第二选择标准;最后,将所提出算法与5种代表性的高维多目标算法进行比较,实验结果表明,所提出算法在处理复杂Pareto前沿高维多目标优化问题时,能在平衡收敛性与多样性的同时,更好地维护多样性.

    Abstract:

    The main goal of the multi-objective optimization algorithm is to achieve good diversity and convergence. In traditional many-objective optimization algorithms, the selection operator is difficult to balance the convergence and diversity of the population, when the dimensionality of the objective increases. To solve this problem, this paper proposes a many-objective algorithm named an indicator-based many-objective evolutionary algorithm with adaptive boundary selection. In environmental selection, it first calculates the index $I_\varepsilon (x,y)$ of the two bodies in the population as the first selection criterion, and then proposes an adaptive boundary selection strategy, which uses population evolution information to make fuzzy predictions of hyperplane coefficients, and then approximately calculate the paradigm distance from the candidate individual to the hyperplane as the second selection criterion. Finally, the proposed algorithm is compared with five representative many-objective optimization algorithms. The experimental results show that when the algorithm handles many-objective optimization problem of the complex Pareto frontier, it can balance convergence and diversity while better maintaining diversity.

    参考文献
    相似文献
    引证文献
引用本文

李二超,魏立森.基于指标和自适应边界选择的高维多目标优化算法[J].控制与决策,2022,37(5):1183-1194

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-30
  • 出版日期: 2022-05-20
文章二维码