基于分层分块DLPPCA-SVM的复杂工业过程监测与故障诊断方法
CSTR:
作者:
作者单位:

1. 国网辽宁省电力有限公司 电力科学研究院,沈阳 110006;2. 东北大学 信息科学与工程学院,沈阳 110004;$ $;3. 东软集团股份有限公司,沈阳 110179;4. 国网辽宁省电力有限公司, 沈阳 110006

作者简介:

通讯作者:

E-mail: yaoyuan_shenyang@163.com.

中图分类号:

TP273

基金项目:

国家重点研发计划项目(2017YFB0902100).


Monitoring and fault diagnosis method of complex industrial process based on DLPPCA-SVM
Author:
Affiliation:

1. State Grid Liaoning Electric Power Research Institute,Shenyang 110006,China;2. College of Information Science and Engineering,Northeastern University,Shenyang 110004,China;3. Neusoft Corporation,Shenyang 110179,China;4. State Grid Liaoning Electric Power,Shenyang 110006,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对工业过程动态性及非线性强等特点,提出一种基于动态局部保持主成分分析法的过程监测方法.该方法通过构造扩展矩阵来解决动态过程中各采样点间相关性强的问题,并将局部保持投影(LPP)与主成分分析法(PCA)相结合从而实现提取流形结构的最大方差信息.在此基础上,针对复杂工业过程变量复杂多变、呈不同特性的特点,提出基于分层分块DLPPCA-SVM(dynamic locality preserving principal component analysis-support vector machine,DLPPCA-SVM)的过程监测及故障诊断方法,该方法针对不同特性的子块分别采用DLPPCA和PCA进行建模,并利用支持向量机进行故障诊断.将该方法用于田纳西-伊斯曼(TE)化工过程和发电机组的在线监测和故障诊断,仿真结果验证了所提出方法的有效性.

    Abstract:

    This paper proposes a process monitoring method based on dynamic local keeping principal component analysis to solve the problem of strong correlation between sampling points in a dynamic process by constructing extended matrixes. Locality preserving projections(LPP) and principal component analysis(PCA) are combined to maximize the overall variance while keeping the local structure unchanged. On this basis, a process monitoring and fault diagnosis method based on the layered and block DLPPCA-SVM(dynamic locality preserving principal component analysis-support vector machine) is proposed for complex industrial processes with different characteristics. DLPPCA and PCA are used to model the sub blocks with different characteristics, and the support vector machine is used for fault diagnosis. The method is applied to the on-line monitoring and fault diagnosis of the TE process and generator set. The simulation results verify the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

姚远,佟佳蓉,高军,等.基于分层分块DLPPCA-SVM的复杂工业过程监测与故障诊断方法[J].控制与决策,2022,37(5):1402-1408

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-03-30
  • 出版日期: 2022-05-20
文章二维码