一种基于证据融合的执行器故障诊断方法
CSTR:
作者:
作者单位:

华北电力大学 自动化系,河北 保定 071000

作者简介:

通讯作者:

E-mail: wys@ncepu.edu.cn.

中图分类号:

TP277

基金项目:

国家自然科学基金项目(61533013).


A method of actuator fault diagnosis based on evidence fusion
Author:
Affiliation:

Department of Automation,North China Electric Power University,Baoding 071000,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在工业过程闭环控制系统中,由于控制器的调节作用,执行器的故障特征在一定程度上受到掩盖和干扰,而单一的诊断方法总是存在误判现象.鉴于此,提出一种基于证据融合的诊断算法.首先,利用基于信号分析的方法计算表征故障特征的指标,针对“一票否决”现象对指标结果加以改进;然后,采用DS证据理论融合基于最小二乘支持向量机(LS-SVM)的概率分类特征实现优势互补,将指标表达的故障机理信息与概率分类挖掘的数据特征信息相结合,规避单一方法的局限性,从而提高诊断的准确率;最后,基于双容水箱系统的实验表明,所提出方法能够有效学习闭环系统中执行器的故障数据特征,提升诊断能力,克服单一方法的误判问题,具有较高的应用价值.

    Abstract:

    In the industrial process closed-loop control system, due to the adjustment function of the controller, the fault characteristics of the actuator are covered and interfered to a certain extent, and the single diagnosis method always has the phenomenon of misjudgment. To solve the above problems, this paper proposes a diagnosis algorithm based on evidence fusion. Firstly, it uses a method based on signal analysis to calculate indicators that represent fault characteristics. And they are improved in response to the “one-vote veto” phenomenon. Then, the DS evidence theory is used to fuse the probabilistic classification features based on the least square support vector machines(LS-SVM), which achieves complementary advantages. The failure mechanism information expressed by indicators is combined with the data feature information mined by probability classification, which circumvents the limitations of a single method and improves the accuracy of diagnosis. Experiments based on the dual-capacity water tank system show that this method can effectively learn the fault data characteristics of the actuator in the closed-loop system to improve diagnostic ability, and overcome the misjudgment problem of a single method, which has high application value.

    参考文献
    相似文献
    引证文献
引用本文

王印松,孙天舒.一种基于证据融合的执行器故障诊断方法[J].控制与决策,2022,37(8):2026-2032

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-29
  • 出版日期: 2022-08-20
文章二维码