基于SCI-CA模型的船舶纵摇多维多步预测方法研究
CSTR:
作者:
作者单位:

哈尔滨工程大学

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Multi-dimensional and Multi-step Prediction Method for Ship Pitching Based on SCI-CA Model
Author:
Affiliation:

Harbin Engineering University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    海洋环境复杂多变,船舶航行容易受到风浪、洋流等因素的干扰,船舶运动具有非线性、耦合性等特点。针对传统的船舶运动姿态预测方法对时序数据的提取效率尚有不足,难以达到高精度预测效果的问题,本文提出了样本卷积交互-通道注意力(SCI-CA, Sample Convolution and Interaction-Channel Attention)神经网络船舶纵摇运动预测模型。该模型采用多类别船舶运动姿态数据作为输入,将输入拆分为两个子序列,利用样本卷积交互网络(SCI)的递归下采样卷积交互结构,结合多分辨率聚合而成的丰富特征,提高船舶运动数据深层特征的利用率。再通过通道注意力机制(CA,Channel Attention)提高有效通道的权重比例,并以残差结构输入到全连接层,得到最后的预测结果。实船数据仿真结果表明,SCI-CA组合模型预测结果较其他模型预测精度高,其平均绝对百分比误差(MAPE,Mean Absolute Percentage Error)、均方根误差(RMSE, Root Mean Square Error)均有明显降低,验证了SCI-CA模型预测船舶运动的有效性。

    Abstract:

    The marine environment is complex and changeable, ship navigation is easily affected by factors such as wind, waves, ocean currents and other factors, ship motion is characterized by nonlinearity and coupling. Aiming at the problem that traditional ship motion prediction methods have insufficient efficiency in extracting time series data and are difficult to achieve high-precision prediction results, a sample convolution and interaction - channel attention (SCI-CA) neural network ship pitch motion prediction model is proposed. The model uses multi-category ship motion attitude data as input, splits the input into two subsequences, utilizes the recursive down sampling convolution interaction structure of the sample convolution interaction network (SCI), and combines the rich features aggregated from multiple resolutions to improve the utilization of deep features of ship motion data. Then, channel attention mechanism (CA) is used to improve the weight ratio of effective channels, and the residual structure is input to the full connection layer to obtain the final prediction result. The simulation results of real ship data show that the prediction accuracy of the SCI-CA combined model is higher than that of other models, and its mean absolute percentage error (MAPE) and root mean square error (RMSE) are significantly reduced, verifying the effectiveness of the SCI-CA model in predicting ship motion.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-08
  • 最后修改日期:2024-07-31
  • 录用日期:2024-04-16
  • 在线发布日期: 2024-05-06
  • 出版日期:
文章二维码